mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-19 00:37:02 +00:00
Merge pull request #67 from TheAlgorithms/revert-66-master
Revert "Update Normal Distribution QuickSort Readme"
This commit is contained in:
commit
13d74ed460
|
@ -59,12 +59,6 @@ __Properties__
|
||||||
|
|
||||||
###### View the algorithm in [action][quick-toptal]
|
###### View the algorithm in [action][quick-toptal]
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
![Normal Distribution QuickSort](https://github.com/prateekiiest/Python/blob/master/sorts/normal_distribution_QuickSort_README.md)
|
|
||||||
|
|
||||||
|
|
||||||
### Selection
|
### Selection
|
||||||
![alt text][selection-image]
|
![alt text][selection-image]
|
||||||
|
|
||||||
|
|
|
@ -1,80 +0,0 @@
|
||||||
#Normal Distribution QuickSort
|
|
||||||
|
|
||||||
|
|
||||||
Algorithm implementing QuickSort Algorithm where the pivot element is chosen randomly between first and last elements of the array and the array elements are taken from a Standard Normal Distribution.
|
|
||||||
This is different from the ordinary quicksort in the sense, that it applies more to real life problems , where elements usually follow a normal distribution. Also the pivot is randomized to make it a more generic one.
|
|
||||||
|
|
||||||
|
|
||||||
##Array Elements
|
|
||||||
|
|
||||||
The array elements are taken from a Standard Normal Distribution , having mean = 0 and standard deviation 1.
|
|
||||||
|
|
||||||
####The code
|
|
||||||
|
|
||||||
```python
|
|
||||||
|
|
||||||
>>> import numpy as np
|
|
||||||
>>> from tempfile import TemporaryFile
|
|
||||||
>>> outfile = TemporaryFile()
|
|
||||||
>>> p = 100 # 100 elements are to be sorted
|
|
||||||
>>> mu, sigma = 0, 1 # mean and standard deviation
|
|
||||||
>>> X = np.random.normal(mu, sigma, p)
|
|
||||||
>>> np.save(outfile, X)
|
|
||||||
>>> print('The array is')
|
|
||||||
>>> print(X)
|
|
||||||
|
|
||||||
```
|
|
||||||
|
|
||||||
------
|
|
||||||
|
|
||||||
#### The Distribution of the Array elements.
|
|
||||||
|
|
||||||
```python
|
|
||||||
>>> mu, sigma = 0, 1 # mean and standard deviation
|
|
||||||
>>> s = np.random.normal(mu, sigma, p)
|
|
||||||
>>> count, bins, ignored = plt.hist(s, 30, normed=True)
|
|
||||||
>>> plt.plot(bins , 1/(sigma * np.sqrt(2 * np.pi)) *np.exp( - (bins - mu)**2 / (2 * sigma**2) ),linewidth=2, color='r')
|
|
||||||
>>> plt.show()
|
|
||||||
|
|
||||||
```
|
|
||||||
|
|
||||||
|
|
||||||
![Array_Element_Distribution](https://github.com/prateekiiest/Algorithms/blob/master/normaldistributionforarrayelements.png)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
---------------------
|
|
||||||
|
|
||||||
--
|
|
||||||
|
|
||||||
##Plotting the function for Checking 'The Number of Comparisons' taking place between Normal Distribution QuickSort and Ordinary QuickSort
|
|
||||||
|
|
||||||
```python
|
|
||||||
>>>import matplotlib.pyplot as plt
|
|
||||||
|
|
||||||
|
|
||||||
# Normal Disrtibution QuickSort is red
|
|
||||||
>>> plt.plot([1,2,4,16,32,64,128,256,512,1024,2048],[1,1,6,15,43,136,340,800,2156,6821,16325],linewidth=2, color='r')
|
|
||||||
|
|
||||||
#Ordinary QuickSort is green
|
|
||||||
>>> plt.plot([1,2,4,16,32,64,128,256,512,1024,2048],[1,1,4,16,67,122,362,949,2131,5086,12866],linewidth=2, color='g')
|
|
||||||
|
|
||||||
>>> plt.show()
|
|
||||||
|
|
||||||
```
|
|
||||||
|
|
||||||
|
|
||||||
----
|
|
||||||
|
|
||||||
###The Plot
|
|
||||||
|
|
||||||
* X axis denotes the number of elements to be sorted.
|
|
||||||
* Y axis denotes the number of comparisons taking place
|
|
||||||
|
|
||||||
![Plot](https://github.com/prateekiiest/Algorithms/blob/master/normaldist.png)
|
|
||||||
|
|
||||||
|
|
||||||
------------------
|
|
Loading…
Reference in New Issue
Block a user