mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 08:17:01 +00:00
Added Scaled Exponential Linear Unit Activation Function (#9027)
* Added Scaled Exponential Linear Unit Activation Function * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update scaled_exponential_linear_unit.py * Update scaled_exponential_linear_unit.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update scaled_exponential_linear_unit.py * Update scaled_exponential_linear_unit.py * Update scaled_exponential_linear_unit.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update scaled_exponential_linear_unit.py * Update scaled_exponential_linear_unit.py --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
9e4f9962a0
commit
153c35eac0
|
@ -0,0 +1,44 @@
|
|||
"""
|
||||
Implements the Scaled Exponential Linear Unit or SELU function.
|
||||
The function takes a vector of K real numbers and two real numbers
|
||||
alpha(default = 1.6732) & lambda (default = 1.0507) as input and
|
||||
then applies the SELU function to each element of the vector.
|
||||
SELU is a self-normalizing activation function. It is a variant
|
||||
of the ELU. The main advantage of SELU is that we can be sure
|
||||
that the output will always be standardized due to its
|
||||
self-normalizing behavior. That means there is no need to
|
||||
include Batch-Normalization layers.
|
||||
References :
|
||||
https://iq.opengenus.org/scaled-exponential-linear-unit/
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def scaled_exponential_linear_unit(
|
||||
vector: np.ndarray, alpha: float = 1.6732, lambda_: float = 1.0507
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Applies the Scaled Exponential Linear Unit function to each element of the vector.
|
||||
Parameters :
|
||||
vector : np.ndarray
|
||||
alpha : float (default = 1.6732)
|
||||
lambda_ : float (default = 1.0507)
|
||||
|
||||
Returns : np.ndarray
|
||||
Formula : f(x) = lambda_ * x if x > 0
|
||||
lambda_ * alpha * (e**x - 1) if x <= 0
|
||||
Examples :
|
||||
>>> scaled_exponential_linear_unit(vector=np.array([1.3, 3.7, 2.4]))
|
||||
array([1.36591, 3.88759, 2.52168])
|
||||
|
||||
>>> scaled_exponential_linear_unit(vector=np.array([1.3, 4.7, 8.2]))
|
||||
array([1.36591, 4.93829, 8.61574])
|
||||
"""
|
||||
return lambda_ * np.where(vector > 0, vector, alpha * (np.exp(vector) - 1))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
Loading…
Reference in New Issue
Block a user