mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-23 21:11:08 +00:00
New linear algebra algorithm (#1122)
* Added new algorithm which takes points as an input and outputs a polynom connecting them * Rename Python-Polynom-for-points.py to python-polynom-for-points.py * Update python-polynom-for-points.py * Update python-polynom-for-points.py * Update python-polynom-for-points.py * Update python-polynom-for-points.py * Update python-polynom-for-points.py * Update python-polynom-for-points.py * Update python-polynom-for-points.py * Add doctests and run thru psf/black
This commit is contained in:
parent
55cea57ffa
commit
158b319d22
130
linear_algebra/src/python-polynom-for-points.py
Normal file
130
linear_algebra/src/python-polynom-for-points.py
Normal file
|
@ -0,0 +1,130 @@
|
|||
def points_to_polynomial(coordinates):
|
||||
"""
|
||||
coordinates is a two dimensional matrix: [[x, y], [x, y], ...]
|
||||
number of points you want to use
|
||||
|
||||
>>> print(points_to_polynomial([]))
|
||||
The program cannot work out a fitting polynomial.
|
||||
>>> print(points_to_polynomial([[]]))
|
||||
The program cannot work out a fitting polynomial.
|
||||
>>> print(points_to_polynomial([[1, 0], [2, 0], [3, 0]]))
|
||||
f(x)=x^2*0.0+x^1*-0.0+x^0*0.0
|
||||
>>> print(points_to_polynomial([[1, 1], [2, 1], [3, 1]]))
|
||||
f(x)=x^2*0.0+x^1*-0.0+x^0*1.0
|
||||
>>> print(points_to_polynomial([[1, 3], [2, 3], [3, 3]]))
|
||||
f(x)=x^2*0.0+x^1*-0.0+x^0*3.0
|
||||
>>> print(points_to_polynomial([[1, 1], [2, 2], [3, 3]]))
|
||||
f(x)=x^2*0.0+x^1*1.0+x^0*0.0
|
||||
>>> print(points_to_polynomial([[1, 1], [2, 4], [3, 9]]))
|
||||
f(x)=x^2*1.0+x^1*-0.0+x^0*0.0
|
||||
>>> print(points_to_polynomial([[1, 3], [2, 6], [3, 11]]))
|
||||
f(x)=x^2*1.0+x^1*-0.0+x^0*2.0
|
||||
>>> print(points_to_polynomial([[1, -3], [2, -6], [3, -11]]))
|
||||
f(x)=x^2*-1.0+x^1*-0.0+x^0*-2.0
|
||||
>>> print(points_to_polynomial([[1, 5], [2, 2], [3, 9]]))
|
||||
f(x)=x^2*5.0+x^1*-18.0+x^0*18.0
|
||||
"""
|
||||
try:
|
||||
check = 1
|
||||
more_check = 0
|
||||
d = coordinates[0][0]
|
||||
for j in range(len(coordinates)):
|
||||
if j == 0:
|
||||
continue
|
||||
if d == coordinates[j][0]:
|
||||
more_check += 1
|
||||
solved = "x=" + str(coordinates[j][0])
|
||||
if more_check == len(coordinates) - 1:
|
||||
check = 2
|
||||
break
|
||||
elif more_check > 0 and more_check != len(coordinates) - 1:
|
||||
check = 3
|
||||
else:
|
||||
check = 1
|
||||
|
||||
if len(coordinates) == 1 and coordinates[0][0] == 0:
|
||||
check = 2
|
||||
solved = "x=0"
|
||||
except Exception:
|
||||
check = 3
|
||||
|
||||
x = len(coordinates)
|
||||
|
||||
if check == 1:
|
||||
count_of_line = 0
|
||||
matrix = []
|
||||
# put the x and x to the power values in a matrix
|
||||
while count_of_line < x:
|
||||
count_in_line = 0
|
||||
a = coordinates[count_of_line][0]
|
||||
count_line = []
|
||||
while count_in_line < x:
|
||||
count_line.append(a ** (x - (count_in_line + 1)))
|
||||
count_in_line += 1
|
||||
matrix.append(count_line)
|
||||
count_of_line += 1
|
||||
|
||||
count_of_line = 0
|
||||
# put the y values into a vector
|
||||
vector = []
|
||||
while count_of_line < x:
|
||||
count_in_line = 0
|
||||
vector.append(coordinates[count_of_line][1])
|
||||
count_of_line += 1
|
||||
|
||||
count = 0
|
||||
|
||||
while count < x:
|
||||
zahlen = 0
|
||||
while zahlen < x:
|
||||
if count == zahlen:
|
||||
zahlen += 1
|
||||
if zahlen == x:
|
||||
break
|
||||
bruch = (matrix[zahlen][count]) / (matrix[count][count])
|
||||
for counting_columns, item in enumerate(matrix[count]):
|
||||
# manipulating all the values in the matrix
|
||||
matrix[zahlen][counting_columns] -= item * bruch
|
||||
# manipulating the values in the vector
|
||||
vector[zahlen] -= vector[count] * bruch
|
||||
zahlen += 1
|
||||
count += 1
|
||||
|
||||
count = 0
|
||||
# make solutions
|
||||
solution = []
|
||||
while count < x:
|
||||
solution.append(vector[count] / matrix[count][count])
|
||||
count += 1
|
||||
|
||||
count = 0
|
||||
solved = "f(x)="
|
||||
|
||||
while count < x:
|
||||
remove_e = str(solution[count]).split("E")
|
||||
if len(remove_e) > 1:
|
||||
solution[count] = remove_e[0] + "*10^" + remove_e[1]
|
||||
solved += "x^" + str(x - (count + 1)) + "*" + str(solution[count])
|
||||
if count + 1 != x:
|
||||
solved += "+"
|
||||
count += 1
|
||||
|
||||
return solved
|
||||
|
||||
elif check == 2:
|
||||
return solved
|
||||
else:
|
||||
return "The program cannot work out a fitting polynomial."
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(points_to_polynomial([]))
|
||||
print(points_to_polynomial([[]]))
|
||||
print(points_to_polynomial([[1, 0], [2, 0], [3, 0]]))
|
||||
print(points_to_polynomial([[1, 1], [2, 1], [3, 1]]))
|
||||
print(points_to_polynomial([[1, 3], [2, 3], [3, 3]]))
|
||||
print(points_to_polynomial([[1, 1], [2, 2], [3, 3]]))
|
||||
print(points_to_polynomial([[1, 1], [2, 4], [3, 9]]))
|
||||
print(points_to_polynomial([[1, 3], [2, 6], [3, 11]]))
|
||||
print(points_to_polynomial([[1, -3], [2, -6], [3, -11]]))
|
||||
print(points_to_polynomial([[1, 5], [2, 2], [3, 9]]))
|
Loading…
Reference in New Issue
Block a user