mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-19 00:37:02 +00:00
resolved errors
This commit is contained in:
parent
b1353dddd4
commit
1713cbe7c2
0
machine_learning/ridge_regression/__init__.py
Normal file
0
machine_learning/ridge_regression/__init__.py
Normal file
|
@ -3,54 +3,57 @@ import pandas as pd
|
|||
|
||||
|
||||
class RidgeRegression:
|
||||
def __init__(self, alpha:float=0.001, regularization_param:float=0.1, num_iterations:int=1000) -> None:
|
||||
def __init__(self,
|
||||
alpha:float=0.001,
|
||||
regularization_param:float=0.1,
|
||||
num_iterations:int=1000) -> None:
|
||||
self.alpha:float = alpha
|
||||
self.regularization_param:float = regularization_param
|
||||
self.num_iterations:int = num_iterations
|
||||
self.theta:np.ndarray = None
|
||||
|
||||
|
||||
def feature_scaling(self, X:np.ndarray) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
|
||||
mean = np.mean(X, axis=0)
|
||||
std = np.std(X, axis=0)
|
||||
def feature_scaling(self, x:np.ndarray)-> tuple[np.ndarray, np.ndarray, np.ndarray]:
|
||||
mean = np.mean(x, axis=0)
|
||||
std = np.std(x, axis=0)
|
||||
|
||||
# avoid division by zero for constant features (std = 0)
|
||||
std[std == 0] = 1 # set std=1 for constant features to avoid NaN
|
||||
|
||||
X_scaled = (X - mean) / std
|
||||
return X_scaled, mean, std
|
||||
x_scaled = (x - mean) / std
|
||||
return x_scaled, mean, std
|
||||
|
||||
|
||||
def fit(self, X:np.ndarray, y:np.ndarray) -> None:
|
||||
X_scaled, mean, std = self.feature_scaling(X)
|
||||
m, n = X_scaled.shape
|
||||
def fit(self, x:np.ndarray, y:np.ndarray) -> None:
|
||||
x_scaled, mean, std = self.feature_scaling(x)
|
||||
m, n = x_scaled.shape
|
||||
self.theta = np.zeros(n) # initializing weights to zeros
|
||||
|
||||
|
||||
for i in range(self.num_iterations):
|
||||
predictions = X_scaled.dot(self.theta)
|
||||
predictions = x_scaled.dot(self.theta)
|
||||
error = predictions - y
|
||||
|
||||
# computing gradient with L2 regularization
|
||||
gradient = (
|
||||
X_scaled.T.dot(error) + self.regularization_param * self.theta
|
||||
x_scaled.T.dot(error) + self.regularization_param * self.theta
|
||||
) / m
|
||||
self.theta -= self.alpha * gradient # updating weights
|
||||
|
||||
|
||||
def predict(self, X:np.ndarray) -> np.ndarray:
|
||||
X_scaled, _, _ = self.feature_scaling(X)
|
||||
return X_scaled.dot(self.theta)
|
||||
def predict(self, x:np.ndarray) -> np.ndarray:
|
||||
x_scaled, _, _ = self.feature_scaling(x)
|
||||
return x_scaled.dot(self.theta)
|
||||
|
||||
|
||||
def compute_cost(self, X:np.ndarray, y:np.ndarray) -> float:
|
||||
X_scaled, _, _ = self.feature_scaling(X)
|
||||
def compute_cost(self, x:np.ndarray, y:np.ndarray) -> float:
|
||||
x_scaled, _, _ = self.feature_scaling(x)
|
||||
m = len(y)
|
||||
|
||||
predictions = X_scaled.dot(self.theta)
|
||||
cost = (1 / (2 * m)) * np.sum((predictions - y) ** 2) + (
|
||||
self.regularization_param / (2 * m)
|
||||
) * np.sum(self.theta**2)
|
||||
predictions = x_scaled.dot(self.theta)
|
||||
cost = (
|
||||
1 / (2 * m)) * np.sum((predictions - y) ** 2) + (
|
||||
self.regularization_param / (2 * m)
|
||||
) * np.sum(self.theta**2)
|
||||
return cost
|
||||
|
||||
|
||||
|
@ -61,21 +64,21 @@ class RidgeRegression:
|
|||
# Example usage
|
||||
if __name__ == "__main__":
|
||||
df = pd.read_csv("ADRvsRating.csv")
|
||||
X = df[["Rating"]].values
|
||||
x = df[["Rating"]].values
|
||||
y = df["ADR"].values
|
||||
y = (y - np.mean(y)) / np.std(y)
|
||||
|
||||
# added bias term to the feature matrix
|
||||
X = np.c_[np.ones(X.shape[0]), X]
|
||||
x = np.c_[np.ones(x.shape[0]), x]
|
||||
|
||||
# initialize and train the ridge regression model
|
||||
model = RidgeRegression(alpha=0.01, regularization_param=0.1, num_iterations=1000)
|
||||
model.fit(X, y)
|
||||
model.fit(x, y)
|
||||
|
||||
# predictions
|
||||
predictions = model.predict(X)
|
||||
predictions = model.predict(x)
|
||||
|
||||
# results
|
||||
print("Optimized Weights:", model.theta)
|
||||
print("Cost:", model.compute_cost(X, y))
|
||||
print("Cost:", model.compute_cost(x, y))
|
||||
print("Mean Absolute Error:", model.mean_absolute_error(y, predictions))
|
||||
|
|
Loading…
Reference in New Issue
Block a user