mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 16:27:02 +00:00
Graphs : Bidirectional A* (#2015)
* implement bidirectional astar * add type hints * add wikipedia url * format with black * changes from review
This commit is contained in:
parent
965d02ad41
commit
1f2d607e56
218
graphs/bidirectional_a_star.py
Normal file
218
graphs/bidirectional_a_star.py
Normal file
|
@ -0,0 +1,218 @@
|
|||
"""
|
||||
https://en.wikipedia.org/wiki/Bidirectional_search
|
||||
"""
|
||||
|
||||
import time
|
||||
from typing import List, Tuple
|
||||
|
||||
grid = [
|
||||
[0, 0, 0, 0, 0, 0, 0],
|
||||
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
|
||||
[0, 0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 1, 0, 0, 0, 0],
|
||||
[1, 0, 1, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 1, 0, 0],
|
||||
]
|
||||
|
||||
delta = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
|
||||
|
||||
|
||||
class Node:
|
||||
"""
|
||||
>>> k = Node(0, 0, 4, 5, 0, None)
|
||||
>>> k.calculate_heuristic()
|
||||
9
|
||||
>>> n = Node(1, 4, 3, 4, 2, None)
|
||||
>>> n.calculate_heuristic()
|
||||
2
|
||||
>>> l = [k, n]
|
||||
>>> n == l[0]
|
||||
False
|
||||
>>> l.sort()
|
||||
>>> n == l[0]
|
||||
True
|
||||
"""
|
||||
|
||||
def __init__(self, pos_x, pos_y, goal_x, goal_y, g_cost, parent):
|
||||
self.pos_x = pos_x
|
||||
self.pos_y = pos_y
|
||||
self.pos = (pos_y, pos_x)
|
||||
self.goal_x = goal_x
|
||||
self.goal_y = goal_y
|
||||
self.g_cost = g_cost
|
||||
self.parent = parent
|
||||
self.h_cost = self.calculate_heuristic()
|
||||
self.f_cost = self.g_cost + self.h_cost
|
||||
|
||||
def calculate_heuristic(self) -> float:
|
||||
"""
|
||||
The heuristic here is the Manhattan Distance
|
||||
Could elaborate to offer more than one choice
|
||||
"""
|
||||
dy = abs(self.pos_x - self.goal_x)
|
||||
dx = abs(self.pos_y - self.goal_y)
|
||||
return dx + dy
|
||||
|
||||
def __lt__(self, other):
|
||||
return self.f_cost < other.f_cost
|
||||
|
||||
|
||||
class AStar:
|
||||
def __init__(self, start, goal):
|
||||
self.start = Node(start[1], start[0], goal[1], goal[0], 0, None)
|
||||
self.target = Node(goal[1], goal[0], goal[1], goal[0], 99999, None)
|
||||
|
||||
self.open_nodes = [self.start]
|
||||
self.closed_nodes = []
|
||||
|
||||
self.reached = False
|
||||
|
||||
self.path = [(self.start.pos_y, self.start.pos_x)]
|
||||
self.costs = [0]
|
||||
|
||||
def search(self):
|
||||
while self.open_nodes:
|
||||
# Open Nodes are sorted using __lt__
|
||||
self.open_nodes.sort()
|
||||
current_node = self.open_nodes.pop(0)
|
||||
|
||||
if current_node.pos == self.target.pos:
|
||||
self.reached = True
|
||||
self.path = self.retrace_path(current_node)
|
||||
break
|
||||
|
||||
self.closed_nodes.append(current_node)
|
||||
successors = self.get_successors(current_node)
|
||||
|
||||
for child_node in successors:
|
||||
if child_node in self.closed_nodes:
|
||||
continue
|
||||
|
||||
if child_node not in self.open_nodes:
|
||||
self.open_nodes.append(child_node)
|
||||
else:
|
||||
# retrieve the best current path
|
||||
better_node = self.open_nodes.pop(self.open_nodes.index(child_node))
|
||||
|
||||
if child_node.g_cost < better_node.g_cost:
|
||||
self.open_nodes.append(child_node)
|
||||
else:
|
||||
self.open_nodes.append(better_node)
|
||||
|
||||
if not (self.reached):
|
||||
print("No path found")
|
||||
|
||||
def get_successors(self, parent: Node) -> List[Node]:
|
||||
"""
|
||||
Returns a list of successors (both in the grid and free spaces)
|
||||
"""
|
||||
successors = []
|
||||
for action in delta:
|
||||
pos_x = parent.pos_x + action[1]
|
||||
pos_y = parent.pos_y + action[0]
|
||||
if not (0 < pos_x < len(grid[0]) - 1 and 0 < pos_y < len(grid) - 1):
|
||||
continue
|
||||
|
||||
if grid[pos_y][pos_x] != 0:
|
||||
continue
|
||||
|
||||
node_ = Node(
|
||||
pos_x,
|
||||
pos_y,
|
||||
self.target.pos_y,
|
||||
self.target.pos_x,
|
||||
parent.g_cost + 1,
|
||||
parent,
|
||||
)
|
||||
successors.append(node_)
|
||||
return successors
|
||||
|
||||
def retrace_path(self, node: Node) -> List[Tuple[int]]:
|
||||
"""
|
||||
Retrace the path from parents to parents until start node
|
||||
"""
|
||||
current_node = node
|
||||
path = []
|
||||
while current_node is not None:
|
||||
path.append((current_node.pos_y, current_node.pos_x))
|
||||
current_node = current_node.parent
|
||||
path.reverse()
|
||||
return path
|
||||
|
||||
|
||||
class BidirectionalAStar:
|
||||
def __init__(self, start, goal):
|
||||
self.fwd_astar = AStar(start, goal)
|
||||
self.bwd_astar = AStar(goal, start)
|
||||
self.reached = False
|
||||
self.path = self.fwd_astar.path
|
||||
|
||||
def search(self):
|
||||
while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes:
|
||||
self.fwd_astar.open_nodes.sort()
|
||||
self.bwd_astar.open_nodes.sort()
|
||||
current_fwd_node = self.fwd_astar.open_nodes.pop(0)
|
||||
current_bwd_node = self.bwd_astar.open_nodes.pop(0)
|
||||
|
||||
if current_bwd_node.pos == current_fwd_node.pos:
|
||||
self.reached = True
|
||||
self.retrace_bidirectional_path(current_fwd_node, current_bwd_node)
|
||||
break
|
||||
|
||||
self.fwd_astar.closed_nodes.append(current_fwd_node)
|
||||
self.bwd_astar.closed_nodes.append(current_bwd_node)
|
||||
|
||||
self.fwd_astar.target = current_bwd_node
|
||||
self.bwd_astar.target = current_fwd_node
|
||||
|
||||
successors = {
|
||||
self.fwd_astar: self.fwd_astar.get_successors(current_fwd_node),
|
||||
self.bwd_astar: self.bwd_astar.get_successors(current_bwd_node),
|
||||
}
|
||||
|
||||
for astar in [self.fwd_astar, self.bwd_astar]:
|
||||
for child_node in successors[astar]:
|
||||
if child_node in astar.closed_nodes:
|
||||
continue
|
||||
|
||||
if child_node not in astar.open_nodes:
|
||||
astar.open_nodes.append(child_node)
|
||||
else:
|
||||
# retrieve the best current path
|
||||
better_node = astar.open_nodes.pop(
|
||||
astar.open_nodes.index(child_node)
|
||||
)
|
||||
|
||||
if child_node.g_cost < better_node.g_cost:
|
||||
astar.open_nodes.append(child_node)
|
||||
else:
|
||||
astar.open_nodes.append(better_node)
|
||||
|
||||
def retrace_bidirectional_path(
|
||||
self, fwd_node: Node, bwd_node: Node
|
||||
) -> List[Tuple[int]]:
|
||||
fwd_path = self.fwd_astar.retrace_path(fwd_node)
|
||||
bwd_path = self.bwd_astar.retrace_path(bwd_node)
|
||||
fwd_path.reverse()
|
||||
path = fwd_path + bwd_path
|
||||
return path
|
||||
|
||||
|
||||
# all coordinates are given in format [y,x]
|
||||
init = (0, 0)
|
||||
goal = (len(grid) - 1, len(grid[0]) - 1)
|
||||
for elem in grid:
|
||||
print(elem)
|
||||
|
||||
start_time = time.time()
|
||||
a_star = AStar(init, goal)
|
||||
a_star.search()
|
||||
end_time = time.time() - start_time
|
||||
print(f"AStar execution time = {end_time:f} seconds")
|
||||
|
||||
bd_start_time = time.time()
|
||||
bidir_astar = BidirectionalAStar(init, goal)
|
||||
bidir_astar.search()
|
||||
bd_end_time = time.time() - bd_start_time
|
||||
print(f"BidirectionalAStar execution time = {bd_end_time:f} seconds")
|
Loading…
Reference in New Issue
Block a user