Python/graphs/bidirectional_a_star.py
Erwin Lejeune 1f2d607e56
Graphs : Bidirectional A* (#2015)
* implement bidirectional astar

* add type hints

* add wikipedia url

* format with black

* changes from review
2020-05-20 12:20:22 +05:30

219 lines
6.7 KiB
Python

"""
https://en.wikipedia.org/wiki/Bidirectional_search
"""
import time
from typing import List, Tuple
grid = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
delta = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
class Node:
"""
>>> k = Node(0, 0, 4, 5, 0, None)
>>> k.calculate_heuristic()
9
>>> n = Node(1, 4, 3, 4, 2, None)
>>> n.calculate_heuristic()
2
>>> l = [k, n]
>>> n == l[0]
False
>>> l.sort()
>>> n == l[0]
True
"""
def __init__(self, pos_x, pos_y, goal_x, goal_y, g_cost, parent):
self.pos_x = pos_x
self.pos_y = pos_y
self.pos = (pos_y, pos_x)
self.goal_x = goal_x
self.goal_y = goal_y
self.g_cost = g_cost
self.parent = parent
self.h_cost = self.calculate_heuristic()
self.f_cost = self.g_cost + self.h_cost
def calculate_heuristic(self) -> float:
"""
The heuristic here is the Manhattan Distance
Could elaborate to offer more than one choice
"""
dy = abs(self.pos_x - self.goal_x)
dx = abs(self.pos_y - self.goal_y)
return dx + dy
def __lt__(self, other):
return self.f_cost < other.f_cost
class AStar:
def __init__(self, start, goal):
self.start = Node(start[1], start[0], goal[1], goal[0], 0, None)
self.target = Node(goal[1], goal[0], goal[1], goal[0], 99999, None)
self.open_nodes = [self.start]
self.closed_nodes = []
self.reached = False
self.path = [(self.start.pos_y, self.start.pos_x)]
self.costs = [0]
def search(self):
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
current_node = self.open_nodes.pop(0)
if current_node.pos == self.target.pos:
self.reached = True
self.path = self.retrace_path(current_node)
break
self.closed_nodes.append(current_node)
successors = self.get_successors(current_node)
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(child_node)
else:
# retrieve the best current path
better_node = self.open_nodes.pop(self.open_nodes.index(child_node))
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(child_node)
else:
self.open_nodes.append(better_node)
if not (self.reached):
print("No path found")
def get_successors(self, parent: Node) -> List[Node]:
"""
Returns a list of successors (both in the grid and free spaces)
"""
successors = []
for action in delta:
pos_x = parent.pos_x + action[1]
pos_y = parent.pos_y + action[0]
if not (0 < pos_x < len(grid[0]) - 1 and 0 < pos_y < len(grid) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
node_ = Node(
pos_x,
pos_y,
self.target.pos_y,
self.target.pos_x,
parent.g_cost + 1,
parent,
)
successors.append(node_)
return successors
def retrace_path(self, node: Node) -> List[Tuple[int]]:
"""
Retrace the path from parents to parents until start node
"""
current_node = node
path = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x))
current_node = current_node.parent
path.reverse()
return path
class BidirectionalAStar:
def __init__(self, start, goal):
self.fwd_astar = AStar(start, goal)
self.bwd_astar = AStar(goal, start)
self.reached = False
self.path = self.fwd_astar.path
def search(self):
while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes:
self.fwd_astar.open_nodes.sort()
self.bwd_astar.open_nodes.sort()
current_fwd_node = self.fwd_astar.open_nodes.pop(0)
current_bwd_node = self.bwd_astar.open_nodes.pop(0)
if current_bwd_node.pos == current_fwd_node.pos:
self.reached = True
self.retrace_bidirectional_path(current_fwd_node, current_bwd_node)
break
self.fwd_astar.closed_nodes.append(current_fwd_node)
self.bwd_astar.closed_nodes.append(current_bwd_node)
self.fwd_astar.target = current_bwd_node
self.bwd_astar.target = current_fwd_node
successors = {
self.fwd_astar: self.fwd_astar.get_successors(current_fwd_node),
self.bwd_astar: self.bwd_astar.get_successors(current_bwd_node),
}
for astar in [self.fwd_astar, self.bwd_astar]:
for child_node in successors[astar]:
if child_node in astar.closed_nodes:
continue
if child_node not in astar.open_nodes:
astar.open_nodes.append(child_node)
else:
# retrieve the best current path
better_node = astar.open_nodes.pop(
astar.open_nodes.index(child_node)
)
if child_node.g_cost < better_node.g_cost:
astar.open_nodes.append(child_node)
else:
astar.open_nodes.append(better_node)
def retrace_bidirectional_path(
self, fwd_node: Node, bwd_node: Node
) -> List[Tuple[int]]:
fwd_path = self.fwd_astar.retrace_path(fwd_node)
bwd_path = self.bwd_astar.retrace_path(bwd_node)
fwd_path.reverse()
path = fwd_path + bwd_path
return path
# all coordinates are given in format [y,x]
init = (0, 0)
goal = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
start_time = time.time()
a_star = AStar(init, goal)
a_star.search()
end_time = time.time() - start_time
print(f"AStar execution time = {end_time:f} seconds")
bd_start_time = time.time()
bidir_astar = BidirectionalAStar(init, goal)
bidir_astar.search()
bd_end_time = time.time() - bd_start_time
print(f"BidirectionalAStar execution time = {bd_end_time:f} seconds")