mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-27 23:11:09 +00:00
commit
1f8693d0c7
101
Graphs/A*.py
Normal file
101
Graphs/A*.py
Normal file
|
@ -0,0 +1,101 @@
|
|||
|
||||
grid = [[0, 1, 0, 0, 0, 0],
|
||||
[0, 1, 0, 0, 0, 0],#0 are free path whereas 1's are obstacles
|
||||
[0, 1, 0, 0, 0, 0],
|
||||
[0, 1, 0, 0, 1, 0],
|
||||
[0, 0, 0, 0, 1, 0]]
|
||||
|
||||
'''
|
||||
heuristic = [[9, 8, 7, 6, 5, 4],
|
||||
[8, 7, 6, 5, 4, 3],
|
||||
[7, 6, 5, 4, 3, 2],
|
||||
[6, 5, 4, 3, 2, 1],
|
||||
[5, 4, 3, 2, 1, 0]]'''
|
||||
|
||||
init = [0, 0]
|
||||
goal = [len(grid)-1, len(grid[0])-1] #all coordinates are given in format [y,x]
|
||||
cost = 1
|
||||
|
||||
#the cost map which pushes the path closer to the goal
|
||||
heuristic = [[0 for row in range(len(grid[0]))] for col in range(len(grid))]
|
||||
for i in range(len(grid)):
|
||||
for j in range(len(grid[0])):
|
||||
heuristic[i][j] = abs(i - goal[0]) + abs(j - goal[1])
|
||||
if grid[i][j] == 1:
|
||||
heuristic[i][j] = 99 #added extra penalty in the heuristic map
|
||||
|
||||
|
||||
#the actions we can take
|
||||
delta = [[-1, 0 ], # go up
|
||||
[ 0, -1], # go left
|
||||
[ 1, 0 ], # go down
|
||||
[ 0, 1 ]] # go right
|
||||
|
||||
|
||||
#function to search the path
|
||||
def search(grid,init,goal,cost,heuristic):
|
||||
|
||||
closed = [[0 for col in range(len(grid[0]))] for row in range(len(grid))]# the referrence grid
|
||||
closed[init[0]][init[1]] = 1
|
||||
action = [[0 for col in range(len(grid[0]))] for row in range(len(grid))]#the action grid
|
||||
|
||||
x = init[0]
|
||||
y = init[1]
|
||||
g = 0
|
||||
f = g + heuristic[init[0]][init[0]]
|
||||
cell = [[f, g, x, y]]
|
||||
|
||||
found = False # flag that is set when search is complete
|
||||
resign = False # flag set if we can't find expand
|
||||
|
||||
while not found and not resign:
|
||||
if len(cell) == 0:
|
||||
resign = True
|
||||
return "FAIL"
|
||||
else:
|
||||
cell.sort()#to choose the least costliest action so as to move closer to the goal
|
||||
cell.reverse()
|
||||
next = cell.pop()
|
||||
x = next[2]
|
||||
y = next[3]
|
||||
g = next[1]
|
||||
f = next[0]
|
||||
|
||||
|
||||
if x == goal[0] and y == goal[1]:
|
||||
found = True
|
||||
else:
|
||||
for i in range(len(delta)):#to try out different valid actions
|
||||
x2 = x + delta[i][0]
|
||||
y2 = y + delta[i][1]
|
||||
if x2 >= 0 and x2 < len(grid) and y2 >=0 and y2 < len(grid[0]):
|
||||
if closed[x2][y2] == 0 and grid[x2][y2] == 0:
|
||||
g2 = g + cost
|
||||
f2 = g2 + heuristic[x2][y2]
|
||||
cell.append([f2, g2, x2, y2])
|
||||
closed[x2][y2] = 1
|
||||
action[x2][y2] = i
|
||||
invpath = []
|
||||
x = goal[0]
|
||||
y = goal[1]
|
||||
invpath.append([x, y])#we get the reverse path from here
|
||||
while x != init[0] or y != init[1]:
|
||||
x2 = x - delta[action[x][y]][0]
|
||||
y2 = y - delta[action[x][y]][1]
|
||||
x = x2
|
||||
y = y2
|
||||
invpath.append([x, y])
|
||||
|
||||
path = []
|
||||
for i in range(len(invpath)):
|
||||
path.append(invpath[len(invpath) - 1 - i])
|
||||
print "ACTION MAP"
|
||||
for i in range(len(action)):
|
||||
print action[i]
|
||||
|
||||
return path
|
||||
|
||||
a = search(grid,init,goal,cost,heuristic)
|
||||
for i in range(len(a)):
|
||||
print a[i]
|
||||
|
305
Neural_Network/convolution_neural_network.py
Normal file
305
Neural_Network/convolution_neural_network.py
Normal file
|
@ -0,0 +1,305 @@
|
|||
#-*- coding: utf-8 -*-
|
||||
|
||||
'''
|
||||
- - - - - -- - - - - - - - - - - - - - - - - - - - - - -
|
||||
Name - - CNN - Convolution Neural Network For Photo Recognizing
|
||||
Goal - - Recognize Handing Writting Word Photo
|
||||
Detail:Total 5 layers neural network
|
||||
* Convolution layer
|
||||
* Pooling layer
|
||||
* Input layer layer of BP
|
||||
* Hiden layer of BP
|
||||
* Output layer of BP
|
||||
Author: Stephen Lee
|
||||
Github: 245885195@qq.com
|
||||
Date: 2017.9.20
|
||||
- - - - - -- - - - - - - - - - - - - - - - - - - - - - -
|
||||
'''
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
class CNN():
|
||||
|
||||
def __init__(self,conv1_get,size_p1,bp_num1,bp_num2,bp_num3,rate_w=0.2,rate_t=0.2):
|
||||
'''
|
||||
:param conv1_get: [a,c,d],size, number, step of convolution kernel
|
||||
:param size_p1: pooling size
|
||||
:param bp_num1: units number of flatten layer
|
||||
:param bp_num2: units number of hidden layer
|
||||
:param bp_num3: units number of output layer
|
||||
:param rate_w: rate of weight learning
|
||||
:param rate_t: rate of threshold learning
|
||||
'''
|
||||
self.num_bp1 = bp_num1
|
||||
self.num_bp2 = bp_num2
|
||||
self.num_bp3 = bp_num3
|
||||
self.conv1 = conv1_get[:2]
|
||||
self.step_conv1 = conv1_get[2]
|
||||
self.size_pooling1 = size_p1
|
||||
self.rate_weight = rate_w
|
||||
self.rate_thre = rate_t
|
||||
self.w_conv1 = [np.mat(-1*np.random.rand(self.conv1[0],self.conv1[0])+0.5) for i in range(self.conv1[1])]
|
||||
self.wkj = np.mat(-1 * np.random.rand(self.num_bp3, self.num_bp2) + 0.5)
|
||||
self.vji = np.mat(-1*np.random.rand(self.num_bp2, self.num_bp1)+0.5)
|
||||
self.thre_conv1 = -2*np.random.rand(self.conv1[1])+1
|
||||
self.thre_bp2 = -2*np.random.rand(self.num_bp2)+1
|
||||
self.thre_bp3 = -2*np.random.rand(self.num_bp3)+1
|
||||
|
||||
|
||||
def save_model(self,save_path):
|
||||
#save model dict with pickle
|
||||
import pickle
|
||||
model_dic = {'num_bp1':self.num_bp1,
|
||||
'num_bp2':self.num_bp2,
|
||||
'num_bp3':self.num_bp3,
|
||||
'conv1':self.conv1,
|
||||
'step_conv1':self.step_conv1,
|
||||
'size_pooling1':self.size_pooling1,
|
||||
'rate_weight':self.rate_weight,
|
||||
'rate_thre':self.rate_thre,
|
||||
'w_conv1':self.w_conv1,
|
||||
'wkj':self.wkj,
|
||||
'vji':self.vji,
|
||||
'thre_conv1':self.thre_conv1,
|
||||
'thre_bp2':self.thre_bp2,
|
||||
'thre_bp3':self.thre_bp3}
|
||||
with open(save_path, 'wb') as f:
|
||||
pickle.dump(model_dic, f)
|
||||
|
||||
print('Model saved: %s'% save_path)
|
||||
|
||||
@classmethod
|
||||
def ReadModel(cls,model_path):
|
||||
#read saved model
|
||||
import pickle
|
||||
with open(model_path, 'rb') as f:
|
||||
model_dic = pickle.load(f)
|
||||
|
||||
conv_get= model_dic.get('conv1')
|
||||
conv_get.append(model_dic.get('step_conv1'))
|
||||
size_p1 = model_dic.get('size_pooling1')
|
||||
bp1 = model_dic.get('num_bp1')
|
||||
bp2 = model_dic.get('num_bp2')
|
||||
bp3 = model_dic.get('num_bp3')
|
||||
r_w = model_dic.get('rate_weight')
|
||||
r_t = model_dic.get('rate_thre')
|
||||
#create model instance
|
||||
conv_ins = CNN(conv_get,size_p1,bp1,bp2,bp3,r_w,r_t)
|
||||
#modify model parameter
|
||||
conv_ins.w_conv1 = model_dic.get('w_conv1')
|
||||
conv_ins.wkj = model_dic.get('wkj')
|
||||
conv_ins.vji = model_dic.get('vji')
|
||||
conv_ins.thre_conv1 = model_dic.get('thre_conv1')
|
||||
conv_ins.thre_bp2 = model_dic.get('thre_bp2')
|
||||
conv_ins.thre_bp3 = model_dic.get('thre_bp3')
|
||||
return conv_ins
|
||||
|
||||
|
||||
def sig(self,x):
|
||||
return 1 / (1 + np.exp(-1*x))
|
||||
|
||||
def do_round(self,x):
|
||||
return round(x, 3)
|
||||
|
||||
def convolute(self,data,convs,w_convs,thre_convs,conv_step):
|
||||
#convolution process
|
||||
size_conv = convs[0]
|
||||
num_conv =convs[1]
|
||||
size_data = np.shape(data)[0]
|
||||
#get the data slice of original image data, data_focus
|
||||
data_focus = []
|
||||
for i_focus in range(0, size_data - size_conv + 1, conv_step):
|
||||
for j_focus in range(0, size_data - size_conv + 1, conv_step):
|
||||
focus = data[i_focus:i_focus + size_conv, j_focus:j_focus + size_conv]
|
||||
data_focus.append(focus)
|
||||
#caculate the feature map of every single kernel, and saved as list of matrix
|
||||
data_featuremap = []
|
||||
Size_FeatureMap = int((size_data - size_conv) / conv_step + 1)
|
||||
for i_map in range(num_conv):
|
||||
featuremap = []
|
||||
for i_focus in range(len(data_focus)):
|
||||
net_focus = np.sum(np.multiply(data_focus[i_focus], w_convs[i_map])) - thre_convs[i_map]
|
||||
featuremap.append(self.sig(net_focus))
|
||||
featuremap = np.asmatrix(featuremap).reshape(Size_FeatureMap, Size_FeatureMap)
|
||||
data_featuremap.append(featuremap)
|
||||
|
||||
#expanding the data slice to One dimenssion
|
||||
focus1_list = []
|
||||
for each_focus in data_focus:
|
||||
focus1_list.extend(self.Expand_Mat(each_focus))
|
||||
focus_list = np.asarray(focus1_list)
|
||||
return focus_list,data_featuremap
|
||||
|
||||
def pooling(self,featuremaps,size_pooling,type='average_pool'):
|
||||
#pooling process
|
||||
size_map = len(featuremaps[0])
|
||||
size_pooled = int(size_map/size_pooling)
|
||||
featuremap_pooled = []
|
||||
for i_map in range(len(featuremaps)):
|
||||
map = featuremaps[i_map]
|
||||
map_pooled = []
|
||||
for i_focus in range(0,size_map,size_pooling):
|
||||
for j_focus in range(0, size_map, size_pooling):
|
||||
focus = map[i_focus:i_focus + size_pooling, j_focus:j_focus + size_pooling]
|
||||
if type == 'average_pool':
|
||||
#average pooling
|
||||
map_pooled.append(np.average(focus))
|
||||
elif type == 'max_pooling':
|
||||
#max pooling
|
||||
map_pooled.append(np.max(focus))
|
||||
map_pooled = np.asmatrix(map_pooled).reshape(size_pooled,size_pooled)
|
||||
featuremap_pooled.append(map_pooled)
|
||||
return featuremap_pooled
|
||||
|
||||
def _expand(self,datas):
|
||||
#expanding three dimension data to one dimension list
|
||||
data_expanded = []
|
||||
for i in range(len(datas)):
|
||||
shapes = np.shape(datas[i])
|
||||
data_listed = datas[i].reshape(1,shapes[0]*shapes[1])
|
||||
data_listed = data_listed.getA().tolist()[0]
|
||||
data_expanded.extend(data_listed)
|
||||
data_expanded = np.asarray(data_expanded)
|
||||
return data_expanded
|
||||
|
||||
def _expand_mat(self,data_mat):
|
||||
#expanding matrix to one dimension list
|
||||
data_mat = np.asarray(data_mat)
|
||||
shapes = np.shape(data_mat)
|
||||
data_expanded = data_mat.reshape(1,shapes[0]*shapes[1])
|
||||
return data_expanded
|
||||
|
||||
def _calculate_gradient_from_pool(self,out_map,pd_pool,num_map,size_map,size_pooling):
|
||||
'''
|
||||
calcluate the gradient from the data slice of pool layer
|
||||
pd_pool: list of matrix
|
||||
out_map: the shape of data slice(size_map*size_map)
|
||||
return: pd_all: list of matrix, [num, size_map, size_map]
|
||||
'''
|
||||
pd_all = []
|
||||
i_pool = 0
|
||||
for i_map in range(num_map):
|
||||
pd_conv1 = np.ones((size_map, size_map))
|
||||
for i in range(0, size_map, size_pooling):
|
||||
for j in range(0, size_map, size_pooling):
|
||||
pd_conv1[i:i + size_pooling, j:j + size_pooling] = pd_pool[i_pool]
|
||||
i_pool = i_pool + 1
|
||||
pd_conv2 = np.multiply(pd_conv1,np.multiply(out_map[i_map],(1-out_map[i_map])))
|
||||
pd_all.append(pd_conv2)
|
||||
return pd_all
|
||||
|
||||
def trian(self,patterns,datas_train, datas_teach, n_repeat, error_accuracy,draw_e = bool):
|
||||
#model traning
|
||||
print('----------------------Start Training-------------------------')
|
||||
print(' - - Shape: Train_Data ',np.shape(datas_train))
|
||||
print(' - - Shape: Teach_Data ',np.shape(datas_teach))
|
||||
rp = 0
|
||||
all_mse = []
|
||||
mse = 10000
|
||||
while rp < n_repeat and mse >= error_accuracy:
|
||||
alle = 0
|
||||
print('-------------Learning Time %d--------------'%rp)
|
||||
for p in range(len(datas_train)):
|
||||
#print('------------Learning Image: %d--------------'%p)
|
||||
data_train = np.asmatrix(datas_train[p])
|
||||
data_teach = np.asarray(datas_teach[p])
|
||||
data_focus1,data_conved1 = self.convolute(data_train,self.conv1,self.w_conv1,
|
||||
self.thre_conv1,conv_step=self.step_conv1)
|
||||
data_pooled1 = self.pooling(data_conved1,self.size_pooling1)
|
||||
shape_featuremap1 = np.shape(data_conved1)
|
||||
'''
|
||||
print(' -----original shape ', np.shape(data_train))
|
||||
print(' ---- after convolution ',np.shape(data_conv1))
|
||||
print(' -----after pooling ',np.shape(data_pooled1))
|
||||
'''
|
||||
data_bp_input = self._expand(data_pooled1)
|
||||
bp_out1 = data_bp_input
|
||||
|
||||
bp_net_j = np.dot(bp_out1,self.vji.T) - self.thre_bp2
|
||||
bp_out2 = self.sig(bp_net_j)
|
||||
bp_net_k = np.dot(bp_out2 ,self.wkj.T) - self.thre_bp3
|
||||
bp_out3 = self.sig(bp_net_k)
|
||||
|
||||
#--------------Model Leaning ------------------------
|
||||
# calcluate error and gradient---------------
|
||||
pd_k_all = np.multiply((data_teach - bp_out3), np.multiply(bp_out3, (1 - bp_out3)))
|
||||
pd_j_all = np.multiply(np.dot(pd_k_all,self.wkj), np.multiply(bp_out2, (1 - bp_out2)))
|
||||
pd_i_all = np.dot(pd_j_all,self.vji)
|
||||
|
||||
pd_conv1_pooled = pd_i_all / (self.size_pooling1*self.size_pooling1)
|
||||
pd_conv1_pooled = pd_conv1_pooled.T.getA().tolist()
|
||||
pd_conv1_all = self._calculate_gradient_from_pool(data_conved1,pd_conv1_pooled,shape_featuremap1[0],
|
||||
shape_featuremap1[1],self.size_pooling1)
|
||||
#weight and threshold learning process---------
|
||||
#convolution layer
|
||||
for k_conv in range(self.conv1[1]):
|
||||
pd_conv_list = self._expand_mat(pd_conv1_all[k_conv])
|
||||
delta_w = self.rate_weight * np.dot(pd_conv_list,data_focus1)
|
||||
|
||||
self.w_conv1[k_conv] = self.w_conv1[k_conv] + delta_w.reshape((self.conv1[0],self.conv1[0]))
|
||||
|
||||
self.thre_conv1[k_conv] = self.thre_conv1[k_conv] - np.sum(pd_conv1_all[k_conv]) * self.rate_thre
|
||||
#all connected layer
|
||||
self.wkj = self.wkj + pd_k_all.T * bp_out2 * self.rate_weight
|
||||
self.vji = self.vji + pd_j_all.T * bp_out1 * self.rate_weight
|
||||
self.thre_bp3 = self.thre_bp3 - pd_k_all * self.rate_thre
|
||||
self.thre_bp2 = self.thre_bp2 - pd_j_all * self.rate_thre
|
||||
# calculate the sum error of all single image
|
||||
errors = np.sum(abs((data_teach - bp_out3)))
|
||||
alle = alle + errors
|
||||
#print(' ----Teach ',data_teach)
|
||||
#print(' ----BP_output ',bp_out3)
|
||||
rp = rp + 1
|
||||
mse = alle/patterns
|
||||
all_mse.append(mse)
|
||||
def draw_error():
|
||||
yplot = [error_accuracy for i in range(int(n_repeat * 1.2))]
|
||||
plt.plot(all_mse, '+-')
|
||||
plt.plot(yplot, 'r--')
|
||||
plt.xlabel('Learning Times')
|
||||
plt.ylabel('All_mse')
|
||||
plt.grid(True, alpha=0.5)
|
||||
plt.show()
|
||||
print('------------------Training Complished---------------------')
|
||||
print(' - - Training epoch: ', rp, ' - - Mse: %.6f' % mse)
|
||||
if draw_e:
|
||||
draw_error()
|
||||
return mse
|
||||
|
||||
def predict(self,datas_test):
|
||||
#model predict
|
||||
produce_out = []
|
||||
print('-------------------Start Testing-------------------------')
|
||||
print(' - - Shape: Test_Data ',np.shape(datas_test))
|
||||
for p in range(len(datas_test)):
|
||||
data_test = np.asmatrix(datas_test[p])
|
||||
data_focus1, data_conved1 = self.convolute(data_test, self.conv1, self.w_conv1,
|
||||
self.thre_conv1, conv_step=self.step_conv1)
|
||||
data_pooled1 = self.pooling(data_conved1, self.size_pooling1)
|
||||
data_bp_input = self._expand(data_pooled1)
|
||||
|
||||
bp_out1 = data_bp_input
|
||||
bp_net_j = bp_out1 * self.vji.T - self.thre_bp2
|
||||
bp_out2 = self.sig(bp_net_j)
|
||||
bp_net_k = bp_out2 * self.wkj.T - self.thre_bp3
|
||||
bp_out3 = self.sig(bp_net_k)
|
||||
produce_out.extend(bp_out3.getA().tolist())
|
||||
res = [list(map(self.do_round,each)) for each in produce_out]
|
||||
return np.asarray(res)
|
||||
|
||||
def convolution(self,data):
|
||||
#return the data of image after convoluting process so we can check it out
|
||||
data_test = np.asmatrix(data)
|
||||
data_focus1, data_conved1 = self.convolute(data_test, self.conv1, self.w_conv1,
|
||||
self.thre_conv1, conv_step=self.step_conv1)
|
||||
data_pooled1 = self.pooling(data_conved1, self.size_pooling1)
|
||||
|
||||
return data_conved1,data_pooled1
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
pass
|
||||
'''
|
||||
I will put the example on other file
|
||||
'''
|
|
@ -1,4 +1,4 @@
|
|||
# The Algorithms - Python [![Build Status](https://travis-ci.org/TheAlgorithms/Python.svg)](https://travis-ci.org/TheAlgorithms/Python)
|
||||
# The Algorithms - Python <!-- [![Build Status](https://travis-ci.org/TheAlgorithms/Python.svg)](https://travis-ci.org/TheAlgorithms/Python) -->
|
||||
|
||||
### All algorithms implemented in Python (for education)
|
||||
|
||||
|
@ -128,6 +128,13 @@ The method is named after **Julius Caesar**, who used it in his private correspo
|
|||
The encryption step performed by a Caesar cipher is often incorporated as part of more complex schemes, such as the Vigenère cipher, and still has modern application in the ROT13 system. As with all single-alphabet substitution ciphers, the Caesar cipher is easily broken and in modern practice offers essentially no communication security.
|
||||
###### Source: [Wikipedia](https://en.wikipedia.org/wiki/Caesar_cipher)
|
||||
|
||||
### Vigenère
|
||||
The **Vigenère cipher** is a method of encrypting alphabetic text by using a series of **interwoven Caesar ciphers** based on the letters of a keyword. It is **a form of polyalphabetic substitution**.<br>
|
||||
The Vigenère cipher has been reinvented many times. The method was originally described by Giovan Battista Bellaso in his 1553 book La cifra del. Sig. Giovan Battista Bellaso; however, the scheme was later misattributed to Blaise de Vigenère in the 19th century, and is now widely known as the "Vigenère cipher".<br>
|
||||
Though the cipher is easy to understand and implement, for three centuries it resisted all attempts to break it; this earned it the description **le chiffre indéchiffrable**(French for 'the indecipherable cipher').
|
||||
Many people have tried to implement encryption schemes that are essentially Vigenère ciphers. Friedrich Kasiski was the first to publish a general method of deciphering a Vigenère cipher in 1863.
|
||||
###### Source: [Wikipedia](https://en.wikipedia.org/wiki/Vigen%C3%A8re_cipher)
|
||||
|
||||
### Transposition
|
||||
In cryptography, a **transposition cipher** is a method of encryption by which the positions held by units of plaintext (which are commonly characters or groups of characters) are shifted according to a regular system, so that the ciphertext constitutes a permutation of the plaintext. That is, the order of the units is changed (the plaintext is reordered).<br>
|
||||
Mathematically a bijective function is used on the characters' positions to encrypt and an inverse function to decrypt.
|
||||
|
|
|
@ -8,7 +8,7 @@ class Node:
|
|||
def __init__(self, label):
|
||||
self.label = label
|
||||
self.left = None
|
||||
self.rigt = None
|
||||
self.right = None
|
||||
|
||||
def getLabel(self):
|
||||
return self.label
|
||||
|
@ -23,10 +23,10 @@ class Node:
|
|||
self.left = left
|
||||
|
||||
def getRight(self):
|
||||
return self.rigt
|
||||
return self.right
|
||||
|
||||
def setRight(self, right):
|
||||
self.rigt = right
|
||||
self.right = right
|
||||
|
||||
|
||||
class BinarySearchTree:
|
||||
|
|
|
@ -1,70 +0,0 @@
|
|||
class GRAPH:
|
||||
"""docstring for GRAPH"""
|
||||
def __init__(self, nodes):
|
||||
self.nodes=nodes
|
||||
self.graph=[[0]*nodes for i in range (nodes)]
|
||||
self.visited=[0]*nodes
|
||||
|
||||
|
||||
def show(self):
|
||||
|
||||
for i in self.graph:
|
||||
for j in i:
|
||||
print(j, end=' ')
|
||||
print(' ')
|
||||
def bfs(self,v):
|
||||
|
||||
visited = [False]*self.vertex
|
||||
visited[v - 1] = True
|
||||
print('%d visited' % (v))
|
||||
|
||||
queue = [v - 1]
|
||||
while len(queue) > 0:
|
||||
v = queue[0]
|
||||
for u in range(self.vertex):
|
||||
if self.graph[v][u] == 1:
|
||||
if visited[u]== False:
|
||||
visited[u] = True
|
||||
queue.append(u)
|
||||
print('%d visited' % (u +1))
|
||||
queue.pop(0)
|
||||
|
||||
g = Graph(10)
|
||||
|
||||
g.add_edge(1,2)
|
||||
g.add_edge(1,3)
|
||||
g.add_edge(1,4)
|
||||
g.add_edge(2,5)
|
||||
g.add_edge(3,6)
|
||||
g.add_edge(3,7)
|
||||
g.add_edge(4,8)
|
||||
g.add_edge(5,9)
|
||||
g.add_edge(6,10)
|
||||
g.bfs(4)
|
||||
=======
|
||||
print self.graph
|
||||
|
||||
def add_edge(self, i, j):
|
||||
self.graph[i][j]=1
|
||||
self.graph[j][i]=1
|
||||
|
||||
def bfs(self,s):
|
||||
queue=[s]
|
||||
self.visited[s]=1
|
||||
while len(queue)!=0:
|
||||
x=queue.pop(0)
|
||||
print(x)
|
||||
for i in range(0,self.nodes):
|
||||
if self.graph[x][i]==1 and self.visited[i]==0:
|
||||
queue.append(i)
|
||||
self.visited[i]=1
|
||||
|
||||
n=int(input("Enter the number of Nodes : "))
|
||||
g=GRAPH(n)
|
||||
e=int(input("Enter the no of edges : "))
|
||||
print("Enter the edges (u v)")
|
||||
for i in range(0,e):
|
||||
u,v=map(int, raw_input().split())
|
||||
g.add_edge(u,v)
|
||||
s=int(input("Enter the source node :"))
|
||||
g.bfs(s)
|
|
@ -1,32 +0,0 @@
|
|||
class GRAPH:
|
||||
"""docstring for GRAPH"""
|
||||
def __init__(self, nodes):
|
||||
self.nodes=nodes
|
||||
self.graph=[[0]*nodes for i in range (nodes)]
|
||||
self.visited=[0]*nodes
|
||||
|
||||
|
||||
def show(self):
|
||||
print self.graph
|
||||
|
||||
def add_edge(self, i, j):
|
||||
self.graph[i][j]=1
|
||||
self.graph[j][i]=1
|
||||
|
||||
def dfs(self,s):
|
||||
self.visited[s]=1
|
||||
print(s)
|
||||
for i in range(0,self.nodes):
|
||||
if self.visited[i]==0 and self.graph[s][i]==1:
|
||||
self.dfs(i)
|
||||
|
||||
|
||||
n=int(input("Enter the number of Nodes : "))
|
||||
g=GRAPH(n)
|
||||
e=int(input("Enter the no of edges : "))
|
||||
print("Enter the edges (u v)")
|
||||
for i in range(0,e):
|
||||
u,v=map(int, raw_input().split())
|
||||
g.add_edge(u,v)
|
||||
s=int(input("Enter the source node :"))
|
||||
g.dfs(s)
|
211
data_structures/Graph/dijkstra_algorithm.py
Normal file
211
data_structures/Graph/dijkstra_algorithm.py
Normal file
|
@ -0,0 +1,211 @@
|
|||
# Title: Dijkstra's Algorithm for finding single source shortest path from scratch
|
||||
# Author: Shubham Malik
|
||||
# References: https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
|
||||
|
||||
import math
|
||||
import sys
|
||||
# For storing the vertex set to retreive node with the lowest distance
|
||||
|
||||
|
||||
class PriorityQueue:
|
||||
# Based on Min Heap
|
||||
def __init__(self):
|
||||
self.cur_size = 0
|
||||
self.array = []
|
||||
self.pos = {} # To store the pos of node in array
|
||||
|
||||
def isEmpty(self):
|
||||
return self.cur_size == 0
|
||||
|
||||
def min_heapify(self, idx):
|
||||
lc = self.left(idx)
|
||||
rc = self.right(idx)
|
||||
if lc < self.cur_size and self.array(lc)[0] < self.array(idx)[0]:
|
||||
smallest = lc
|
||||
else:
|
||||
smallest = idx
|
||||
if rc < self.cur_size and self.array(rc)[0] < self.array(smallest)[0]:
|
||||
smallest = rc
|
||||
if smallest != idx:
|
||||
self.swap(idx, smallest)
|
||||
self.min_heapify(smallest)
|
||||
|
||||
def insert(self, tup):
|
||||
# Inserts a node into the Priority Queue
|
||||
self.pos[tup[1]] = self.cur_size
|
||||
self.cur_size += 1
|
||||
self.array.append((sys.maxsize, tup[1]))
|
||||
self.decrease_key((sys.maxsize, tup[1]), tup[0])
|
||||
|
||||
def extract_min(self):
|
||||
# Removes and returns the min element at top of priority queue
|
||||
min_node = self.array[0][1]
|
||||
self.array[0] = self.array[self.cur_size - 1]
|
||||
self.cur_size -= 1
|
||||
self.min_heapify(1)
|
||||
del self.pos[min_node]
|
||||
return min_node
|
||||
|
||||
def left(self, i):
|
||||
# returns the index of left child
|
||||
return 2 * i + 1
|
||||
|
||||
def right(self, i):
|
||||
# returns the index of right child
|
||||
return 2 * i + 2
|
||||
|
||||
def par(self, i):
|
||||
# returns the index of parent
|
||||
return math.floor(i / 2)
|
||||
|
||||
def swap(self, i, j):
|
||||
# swaps array elements at indices i and j
|
||||
# update the pos{}
|
||||
self.pos[self.array[i][1]] = j
|
||||
self.pos[self.array[j][1]] = i
|
||||
temp = self.array[i]
|
||||
self.array[i] = self.array[j]
|
||||
self.array[j] = temp
|
||||
|
||||
def decrease_key(self, tup, new_d):
|
||||
idx = self.pos[tup[1]]
|
||||
# assuming the new_d is atmost old_d
|
||||
self.array[idx] = (new_d, tup[1])
|
||||
while idx > 0 and self.array[self.par(idx)][0] > self.array[idx][0]:
|
||||
self.swap(idx, self.par(idx))
|
||||
idx = self.par(idx)
|
||||
|
||||
|
||||
class Graph:
|
||||
def __init__(self, num):
|
||||
self.adjList = {} # To store graph: u -> (v,w)
|
||||
self.num_nodes = num # Number of nodes in graph
|
||||
# To store the distance from source vertex
|
||||
self.dist = [0] * self.num_nodes
|
||||
self.par = [-1] * self.num_nodes # To store the path
|
||||
|
||||
def add_edge(self, u, v, w):
|
||||
# Edge going from node u to v and v to u with weight w
|
||||
# u (w)-> v, v (w) -> u
|
||||
# Check if u already in graph
|
||||
if u in self.adjList.keys():
|
||||
self.adjList[u].append((v, w))
|
||||
else:
|
||||
self.adjList[u] = [(v, w)]
|
||||
|
||||
# Assuming undirected graph
|
||||
if v in self.adjList.keys():
|
||||
self.adjList[v].append((u, w))
|
||||
else:
|
||||
self.adjList[v] = [(u, w)]
|
||||
|
||||
def show_graph(self):
|
||||
# u -> v(w)
|
||||
for u in self.adjList:
|
||||
print(u, '->', ' -> '.join(str("{}({})".format(v, w))
|
||||
for v, w in self.adjList[u]))
|
||||
|
||||
def dijkstra(self, src):
|
||||
# Flush old junk values in par[]
|
||||
self.par = [-1] * self.num_nodes
|
||||
# src is the source node
|
||||
self.dist[src] = 0
|
||||
Q = PriorityQueue()
|
||||
Q.insert((0, src)) # (dist from src, node)
|
||||
for u in self.adjList.keys():
|
||||
if u != src:
|
||||
self.dist[u] = sys.maxsize # Infinity
|
||||
self.par[u] = -1
|
||||
|
||||
while not Q.isEmpty():
|
||||
u = Q.extract_min() # Returns node with the min dist from source
|
||||
# Update the distance of all the neighbours of u and
|
||||
# if their prev dist was INFINITY then push them in Q
|
||||
for v, w in self.adjList[u]:
|
||||
new_dist = self.dist[u] + w
|
||||
if self.dist[v] > new_dist:
|
||||
if self.dist[v] == sys.maxsize:
|
||||
Q.insert((new_dist, v))
|
||||
else:
|
||||
Q.decrease_key((self.dist[v], v), new_dist)
|
||||
self.dist[v] = new_dist
|
||||
self.par[v] = u
|
||||
|
||||
# Show the shortest distances from src
|
||||
self.show_distances(src)
|
||||
|
||||
def show_distances(self, src):
|
||||
print("Distance from node: {}".format(src))
|
||||
for u in range(self.num_nodes):
|
||||
print('Node {} has distance: {}'.format(u, self.dist[u]))
|
||||
|
||||
def show_path(self, src, dest):
|
||||
# To show the shortest path from src to dest
|
||||
# WARNING: Use it *after* calling dijkstra
|
||||
path = []
|
||||
cost = 0
|
||||
temp = dest
|
||||
# Backtracking from dest to src
|
||||
while self.par[temp] != -1:
|
||||
path.append(temp)
|
||||
if temp != src:
|
||||
for v, w in self.adjList[temp]:
|
||||
if v == self.par[temp]:
|
||||
cost += w
|
||||
break
|
||||
temp = self.par[temp]
|
||||
path.append(src)
|
||||
path.reverse()
|
||||
|
||||
print('----Path to reach {} from {}----'.format(dest, src))
|
||||
for u in path:
|
||||
print('{}'.format(u), end=' ')
|
||||
if u != dest:
|
||||
print('-> ', end='')
|
||||
|
||||
print('\nTotal cost of path: ', cost)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
graph = Graph(9)
|
||||
graph.add_edge(0, 1, 4)
|
||||
graph.add_edge(0, 7, 8)
|
||||
graph.add_edge(1, 2, 8)
|
||||
graph.add_edge(1, 7, 11)
|
||||
graph.add_edge(2, 3, 7)
|
||||
graph.add_edge(2, 8, 2)
|
||||
graph.add_edge(2, 5, 4)
|
||||
graph.add_edge(3, 4, 9)
|
||||
graph.add_edge(3, 5, 14)
|
||||
graph.add_edge(4, 5, 10)
|
||||
graph.add_edge(5, 6, 2)
|
||||
graph.add_edge(6, 7, 1)
|
||||
graph.add_edge(6, 8, 6)
|
||||
graph.add_edge(7, 8, 7)
|
||||
graph.show_graph()
|
||||
graph.dijkstra(0)
|
||||
graph.show_path(0, 4)
|
||||
|
||||
# OUTPUT
|
||||
# 0 -> 1(4) -> 7(8)
|
||||
# 1 -> 0(4) -> 2(8) -> 7(11)
|
||||
# 7 -> 0(8) -> 1(11) -> 6(1) -> 8(7)
|
||||
# 2 -> 1(8) -> 3(7) -> 8(2) -> 5(4)
|
||||
# 3 -> 2(7) -> 4(9) -> 5(14)
|
||||
# 8 -> 2(2) -> 6(6) -> 7(7)
|
||||
# 5 -> 2(4) -> 3(14) -> 4(10) -> 6(2)
|
||||
# 4 -> 3(9) -> 5(10)
|
||||
# 6 -> 5(2) -> 7(1) -> 8(6)
|
||||
# Distance from node: 0
|
||||
# Node 0 has distance: 0
|
||||
# Node 1 has distance: 4
|
||||
# Node 2 has distance: 12
|
||||
# Node 3 has distance: 19
|
||||
# Node 4 has distance: 21
|
||||
# Node 5 has distance: 11
|
||||
# Node 6 has distance: 9
|
||||
# Node 7 has distance: 8
|
||||
# Node 8 has distance: 14
|
||||
# ----Path to reach 4 from 0----
|
||||
# 0 -> 7 -> 6 -> 5 -> 4
|
||||
# Total cost of path: 21
|
|
@ -3,22 +3,15 @@ class Node:#create a Node
|
|||
self.data=data#given data
|
||||
self.next=None#given next to None
|
||||
class Linked_List:
|
||||
|
||||
pass
|
||||
def insert_tail(Head,data):#insert the data at tail
|
||||
tamp=Head#create a tamp as a head
|
||||
if(tamp==None):#if linkedlist is empty
|
||||
newNod=Node()#create newNode Node type and given data and next
|
||||
newNod.data=data
|
||||
newNod.next=None
|
||||
Head=newNod
|
||||
|
||||
def insert_tail(Head,data):
|
||||
if(Head.next is None):
|
||||
Head.next = Node(data)
|
||||
else:
|
||||
while tamp.next!=None:#find the last Node
|
||||
tamp=tamp.next
|
||||
newNod = Node()#create a new node
|
||||
newNod.data = data
|
||||
newNod.next = None
|
||||
tamp.next=newNod#put the newnode into last node
|
||||
return Head#return first node of linked list
|
||||
insert_tail(Head.next, data)
|
||||
|
||||
def insert_head(Head,data):
|
||||
tamp = Head
|
||||
if (tamp == None):
|
||||
|
@ -32,16 +25,18 @@ class Linked_List:
|
|||
newNod.next = Head#put the Head at NewNode Next
|
||||
Head=newNod#make a NewNode to Head
|
||||
return Head
|
||||
def Print(Head):#print every node data
|
||||
tamp=Node()
|
||||
|
||||
def printList(Head):#print every node data
|
||||
tamp=Head
|
||||
while tamp!=None:
|
||||
print(tamp.data)
|
||||
tamp=tamp.next
|
||||
|
||||
def delete_head(Head):#delete from head
|
||||
if Head!=None:
|
||||
Head=Head.next
|
||||
return Head#return new Head
|
||||
|
||||
def delete_tail(Head):#delete from tail
|
||||
if Head!=None:
|
||||
tamp = Node()
|
||||
|
@ -50,12 +45,6 @@ class Linked_List:
|
|||
tamp = tamp.next
|
||||
tamp.next=None#delete the last element by give next None to 2nd last Element
|
||||
return Head
|
||||
|
||||
def isEmpty(Head):
|
||||
if(Head==None):#check Head is None or Not
|
||||
return True#return Ture if list is empty
|
||||
else:
|
||||
return False#check False if it's not empty
|
||||
|
||||
|
||||
|
||||
|
||||
return Head is None #Return if Head is none
|
42
dynamic_programming/fastfibonacci.py
Normal file
42
dynamic_programming/fastfibonacci.py
Normal file
|
@ -0,0 +1,42 @@
|
|||
"""
|
||||
This program calculates the nth Fibonacci number in O(log(n)).
|
||||
It's possible to calculate F(1000000) in less than a second.
|
||||
"""
|
||||
import sys
|
||||
|
||||
|
||||
# returns F(n)
|
||||
def fibonacci(n: int):
|
||||
if n < 0:
|
||||
raise ValueError("Negative arguments are not supported")
|
||||
return _fib(n)[0]
|
||||
|
||||
|
||||
# returns (F(n), F(n-1))
|
||||
def _fib(n: int):
|
||||
if n == 0:
|
||||
# (F(0), F(1))
|
||||
return (0, 1)
|
||||
else:
|
||||
# F(2n) = F(n)[2F(n+1) − F(n)]
|
||||
# F(2n+1) = F(n+1)^2+F(n)^2
|
||||
a, b = _fib(n // 2)
|
||||
c = a * (b * 2 - a)
|
||||
d = a * a + b * b
|
||||
if n % 2 == 0:
|
||||
return (c, d)
|
||||
else:
|
||||
return (d, c + d)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = sys.argv[1:]
|
||||
if len(args) != 1:
|
||||
print("Too few or too much parameters given.")
|
||||
exit(1)
|
||||
try:
|
||||
n = int(args[0])
|
||||
except ValueError:
|
||||
print("Could not convert data to an integer.")
|
||||
exit(1)
|
||||
print("F(%d) = %d" % (n, fibonacci(n)))
|
|
@ -30,7 +30,7 @@ if __name__ == '__main__':
|
|||
import sys
|
||||
|
||||
print("\n********* Fibonacci Series Using Dynamic Programming ************\n")
|
||||
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
|
||||
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
|
||||
# otherwise 2.x's input builtin function is too "smart"
|
||||
if sys.version_info.major < 3:
|
||||
input_function = raw_input
|
||||
|
|
139
machine_learning/decision_tree.py
Normal file
139
machine_learning/decision_tree.py
Normal file
|
@ -0,0 +1,139 @@
|
|||
"""
|
||||
Implementation of a basic regression decision tree.
|
||||
Input data set: The input data set must be 1-dimensional with continuous labels.
|
||||
Output: The decision tree maps a real number input to a real number output.
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
|
||||
class Decision_Tree:
|
||||
def __init__(self, depth = 5, min_leaf_size = 5):
|
||||
self.depth = depth
|
||||
self.decision_boundary = 0
|
||||
self.left = None
|
||||
self.right = None
|
||||
self.min_leaf_size = min_leaf_size
|
||||
self.prediction = None
|
||||
|
||||
def mean_squared_error(self, labels, prediction):
|
||||
"""
|
||||
mean_squared_error:
|
||||
@param labels: a one dimensional numpy array
|
||||
@param prediction: a floating point value
|
||||
return value: mean_squared_error calculates the error if prediction is used to estimate the labels
|
||||
"""
|
||||
if labels.ndim != 1:
|
||||
print("Error: Input labels must be one dimensional")
|
||||
|
||||
return np.mean((labels - prediction) ** 2)
|
||||
|
||||
def train(self, X, y):
|
||||
"""
|
||||
train:
|
||||
@param X: a one dimensional numpy array
|
||||
@param y: a one dimensional numpy array.
|
||||
The contents of y are the labels for the corresponding X values
|
||||
|
||||
train does not have a return value
|
||||
"""
|
||||
|
||||
"""
|
||||
this section is to check that the inputs conform to our dimensionality constraints
|
||||
"""
|
||||
if X.ndim != 1:
|
||||
print("Error: Input data set must be one dimensional")
|
||||
return
|
||||
if len(X) != len(y):
|
||||
print("Error: X and y have different lengths")
|
||||
return
|
||||
if y.ndim != 1:
|
||||
print("Error: Data set labels must be one dimensional")
|
||||
return
|
||||
|
||||
if len(X) < 2 * self.min_leaf_size:
|
||||
self.prediction = np.mean(y)
|
||||
return
|
||||
|
||||
if self.depth == 1:
|
||||
self.prediction = np.mean(y)
|
||||
return
|
||||
|
||||
best_split = 0
|
||||
min_error = self.mean_squared_error(X,np.mean(y)) * 2
|
||||
|
||||
|
||||
"""
|
||||
loop over all possible splits for the decision tree. find the best split.
|
||||
if no split exists that is less than 2 * error for the entire array
|
||||
then the data set is not split and the average for the entire array is used as the predictor
|
||||
"""
|
||||
for i in range(len(X)):
|
||||
if len(X[:i]) < self.min_leaf_size:
|
||||
continue
|
||||
elif len(X[i:]) < self.min_leaf_size:
|
||||
continue
|
||||
else:
|
||||
error_left = self.mean_squared_error(X[:i], np.mean(y[:i]))
|
||||
error_right = self.mean_squared_error(X[i:], np.mean(y[i:]))
|
||||
error = error_left + error_right
|
||||
if error < min_error:
|
||||
best_split = i
|
||||
min_error = error
|
||||
|
||||
if best_split != 0:
|
||||
left_X = X[:best_split]
|
||||
left_y = y[:best_split]
|
||||
right_X = X[best_split:]
|
||||
right_y = y[best_split:]
|
||||
|
||||
self.decision_boundary = X[best_split]
|
||||
self.left = Decision_Tree(depth = self.depth - 1, min_leaf_size = self.min_leaf_size)
|
||||
self.right = Decision_Tree(depth = self.depth - 1, min_leaf_size = self.min_leaf_size)
|
||||
self.left.train(left_X, left_y)
|
||||
self.right.train(right_X, right_y)
|
||||
else:
|
||||
self.prediction = np.mean(y)
|
||||
|
||||
return
|
||||
|
||||
def predict(self, x):
|
||||
"""
|
||||
predict:
|
||||
@param x: a floating point value to predict the label of
|
||||
the prediction function works by recursively calling the predict function
|
||||
of the appropriate subtrees based on the tree's decision boundary
|
||||
"""
|
||||
if self.prediction is not None:
|
||||
return self.prediction
|
||||
elif self.left or self.right is not None:
|
||||
if x >= self.decision_boundary:
|
||||
return self.right.predict(x)
|
||||
else:
|
||||
return self.left.predict(x)
|
||||
else:
|
||||
print("Error: Decision tree not yet trained")
|
||||
return None
|
||||
|
||||
def main():
|
||||
"""
|
||||
In this demonstration we're generating a sample data set from the sin function in numpy.
|
||||
We then train a decision tree on the data set and use the decision tree to predict the
|
||||
label of 10 different test values. Then the mean squared error over this test is displayed.
|
||||
"""
|
||||
X = np.arange(-1., 1., 0.005)
|
||||
y = np.sin(X)
|
||||
|
||||
tree = Decision_Tree(depth = 10, min_leaf_size = 10)
|
||||
tree.train(X,y)
|
||||
|
||||
test_cases = (np.random.rand(10) * 2) - 1
|
||||
predictions = np.array([tree.predict(x) for x in test_cases])
|
||||
avg_error = np.mean((predictions - test_cases) ** 2)
|
||||
|
||||
print("Test values: " + str(test_cases))
|
||||
print("Predictions: " + str(predictions))
|
||||
print("Average error: " + str(avg_error))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
18
other/euclidean_gcd.py
Normal file
18
other/euclidean_gcd.py
Normal file
|
@ -0,0 +1,18 @@
|
|||
# https://en.wikipedia.org/wiki/Euclidean_algorithm
|
||||
|
||||
def euclidean_gcd(a, b):
|
||||
while b:
|
||||
t = b
|
||||
b = a % b
|
||||
a = t
|
||||
return a
|
||||
|
||||
def main():
|
||||
print("GCD(3, 5) = " + str(euclidean_gcd(3, 5)))
|
||||
print("GCD(5, 3) = " + str(euclidean_gcd(5, 3)))
|
||||
print("GCD(1, 3) = " + str(euclidean_gcd(1, 3)))
|
||||
print("GCD(3, 6) = " + str(euclidean_gcd(3, 6)))
|
||||
print("GCD(6, 3) = " + str(euclidean_gcd(6, 3)))
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
|
@ -110,10 +110,10 @@ def binary_search_by_recursion(sorted_collection, item, left, right):
|
|||
if sorted_collection[midpoint] == item:
|
||||
return midpoint
|
||||
elif sorted_collection[midpoint] > item:
|
||||
return binary_search_by_recursion(sorted_collection, item, left, right-1)
|
||||
return binary_search_by_recursion(sorted_collection, item, left, midpoint-1)
|
||||
else:
|
||||
return binary_search_by_recursion(sorted_collection, item, left+1, right)
|
||||
|
||||
return binary_search_by_recursion(sorted_collection, item, midpoint+1, right)
|
||||
|
||||
def __assert_sorted(collection):
|
||||
"""Check if collection is sorted, if not - raises :py:class:`ValueError`
|
||||
|
||||
|
@ -137,14 +137,14 @@ def __assert_sorted(collection):
|
|||
|
||||
if __name__ == '__main__':
|
||||
import sys
|
||||
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
|
||||
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
|
||||
# otherwise 2.x's input builtin function is too "smart"
|
||||
if sys.version_info.major < 3:
|
||||
input_function = raw_input
|
||||
else:
|
||||
input_function = input
|
||||
|
||||
user_input = input_function('Enter numbers separated by coma:\n')
|
||||
user_input = input_function('Enter numbers separated by comma:\n')
|
||||
collection = [int(item) for item in user_input.split(',')]
|
||||
try:
|
||||
__assert_sorted(collection)
|
||||
|
|
102
searches/interpolation_search.py
Normal file
102
searches/interpolation_search.py
Normal file
|
@ -0,0 +1,102 @@
|
|||
"""
|
||||
This is pure python implementation of interpolation search algorithm
|
||||
"""
|
||||
from __future__ import print_function
|
||||
import bisect
|
||||
|
||||
|
||||
def interpolation_search(sorted_collection, item):
|
||||
"""Pure implementation of interpolation search algorithm in Python
|
||||
Be careful collection must be sorted, otherwise result will be
|
||||
unpredictable
|
||||
:param sorted_collection: some sorted collection with comparable items
|
||||
:param item: item value to search
|
||||
:return: index of found item or None if item is not found
|
||||
"""
|
||||
left = 0
|
||||
right = len(sorted_collection) - 1
|
||||
|
||||
while left <= right:
|
||||
point = left + ((item - sorted_collection[left]) * (right - left)) // (sorted_collection[right] - sorted_collection[left])
|
||||
|
||||
#out of range check
|
||||
if point<0 or point>=len(sorted_collection):
|
||||
return None
|
||||
|
||||
current_item = sorted_collection[point]
|
||||
if current_item == item:
|
||||
return point
|
||||
else:
|
||||
if item < current_item:
|
||||
right = point - 1
|
||||
else:
|
||||
left = point + 1
|
||||
return None
|
||||
|
||||
|
||||
def interpolation_search_by_recursion(sorted_collection, item, left, right):
|
||||
|
||||
"""Pure implementation of interpolation search algorithm in Python by recursion
|
||||
Be careful collection must be sorted, otherwise result will be
|
||||
unpredictable
|
||||
First recursion should be started with left=0 and right=(len(sorted_collection)-1)
|
||||
:param sorted_collection: some sorted collection with comparable items
|
||||
:param item: item value to search
|
||||
:return: index of found item or None if item is not found
|
||||
"""
|
||||
point = left + ((item - sorted_collection[left]) * (right - left)) // (sorted_collection[right] - sorted_collection[left])
|
||||
|
||||
#out of range check
|
||||
if point<0 or point>=len(sorted_collection):
|
||||
return None
|
||||
|
||||
if sorted_collection[point] == item:
|
||||
return point
|
||||
elif sorted_collection[point] > item:
|
||||
return interpolation_search_by_recursion(sorted_collection, item, left, point-1)
|
||||
else:
|
||||
return interpolation_search_by_recursion(sorted_collection, item, point+1, right)
|
||||
|
||||
def __assert_sorted(collection):
|
||||
"""Check if collection is sorted, if not - raises :py:class:`ValueError`
|
||||
:param collection: collection
|
||||
:return: True if collection is sorted
|
||||
:raise: :py:class:`ValueError` if collection is not sorted
|
||||
Examples:
|
||||
>>> __assert_sorted([0, 1, 2, 4])
|
||||
True
|
||||
>>> __assert_sorted([10, -1, 5])
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Collection must be sorted
|
||||
"""
|
||||
if collection != sorted(collection):
|
||||
raise ValueError('Collection must be sorted')
|
||||
return True
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import sys
|
||||
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
|
||||
# otherwise 2.x's input builtin function is too "smart"
|
||||
if sys.version_info.major < 3:
|
||||
input_function = raw_input
|
||||
else:
|
||||
input_function = input
|
||||
|
||||
user_input = input_function('Enter numbers separated by comma:\n')
|
||||
collection = [int(item) for item in user_input.split(',')]
|
||||
try:
|
||||
__assert_sorted(collection)
|
||||
except ValueError:
|
||||
sys.exit('Sequence must be sorted to apply interpolation search')
|
||||
|
||||
target_input = input_function(
|
||||
'Enter a single number to be found in the list:\n'
|
||||
)
|
||||
target = int(target_input)
|
||||
result = interpolation_search(collection, target)
|
||||
if result is not None:
|
||||
print('{} found at positions: {}'.format(target, result))
|
||||
else:
|
||||
print('Not found')
|
|
@ -41,7 +41,7 @@ def linear_search(sequence, target):
|
|||
if __name__ == '__main__':
|
||||
import sys
|
||||
|
||||
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
|
||||
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
|
||||
# otherwise 2.x's input builtin function is too "smart"
|
||||
if sys.version_info.major < 3:
|
||||
input_function = raw_input
|
||||
|
|
47
searches/quick_select.py
Normal file
47
searches/quick_select.py
Normal file
|
@ -0,0 +1,47 @@
|
|||
import collections
|
||||
import sys
|
||||
import random
|
||||
import time
|
||||
import math
|
||||
"""
|
||||
A python implementation of the quick select algorithm, which is efficient for calculating the value that would appear in the index of a list if it would be sorted, even if it is not already sorted
|
||||
https://en.wikipedia.org/wiki/Quickselect
|
||||
"""
|
||||
def _partition(data, pivot):
|
||||
"""
|
||||
Three way partition the data into smaller, equal and greater lists,
|
||||
in relationship to the pivot
|
||||
:param data: The data to be sorted (a list)
|
||||
:param pivot: The value to partition the data on
|
||||
:return: Three list: smaller, equal and greater
|
||||
"""
|
||||
less, equal, greater = [], [], []
|
||||
for element in data:
|
||||
if element.address < pivot.address:
|
||||
less.append(element)
|
||||
elif element.address > pivot.address:
|
||||
greater.append(element)
|
||||
else:
|
||||
equal.append(element)
|
||||
return less, equal, greater
|
||||
|
||||
def quickSelect(list, k):
|
||||
#k = len(list) // 2 when trying to find the median (index that value would be when list is sorted)
|
||||
smaller = []
|
||||
larger = []
|
||||
pivot = random.randint(0, len(list) - 1)
|
||||
pivot = list[pivot]
|
||||
count = 0
|
||||
smaller, equal, larger =_partition(list, pivot)
|
||||
count = len(equal)
|
||||
m = len(smaller)
|
||||
|
||||
#k is the pivot
|
||||
if m <= k < m + count:
|
||||
return pivot
|
||||
# must be in smaller
|
||||
elif m > k:
|
||||
return quickSelect(smaller, k)
|
||||
#must be in larger
|
||||
else:
|
||||
return quickSelect(larger, k - (m + count))
|
|
@ -41,7 +41,7 @@ def bogosort(collection):
|
|||
if __name__ == '__main__':
|
||||
import sys
|
||||
|
||||
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
|
||||
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
|
||||
# otherwise 2.x's input builtin function is too "smart"
|
||||
if sys.version_info.major < 3:
|
||||
input_function = raw_input
|
||||
|
|
|
@ -41,7 +41,7 @@ def bubble_sort(collection):
|
|||
|
||||
if __name__ == '__main__':
|
||||
import sys
|
||||
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
|
||||
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
|
||||
# otherwise 2.x's input builtin function is too "smart"
|
||||
if sys.version_info.major < 3:
|
||||
input_function = raw_input
|
||||
|
|
|
@ -23,7 +23,7 @@ def cocktail_shaker_sort(unsorted):
|
|||
if __name__ == '__main__':
|
||||
import sys
|
||||
|
||||
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
|
||||
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
|
||||
# otherwise 2.x's input builtin function is too "smart"
|
||||
if sys.version_info.major < 3:
|
||||
input_function = raw_input
|
||||
|
|
72
sorts/counting_sort.py
Normal file
72
sorts/counting_sort.py
Normal file
|
@ -0,0 +1,72 @@
|
|||
"""
|
||||
This is pure python implementation of counting sort algorithm
|
||||
For doctests run following command:
|
||||
python -m doctest -v counting_sort.py
|
||||
or
|
||||
python3 -m doctest -v counting_sort.py
|
||||
For manual testing run:
|
||||
python counting_sort.py
|
||||
"""
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
|
||||
def counting_sort(collection):
|
||||
"""Pure implementation of counting sort algorithm in Python
|
||||
:param collection: some mutable ordered collection with heterogeneous
|
||||
comparable items inside
|
||||
:return: the same collection ordered by ascending
|
||||
Examples:
|
||||
>>> counting_sort([0, 5, 3, 2, 2])
|
||||
[0, 2, 2, 3, 5]
|
||||
>>> counting_sort([])
|
||||
[]
|
||||
>>> counting_sort([-2, -5, -45])
|
||||
[-45, -5, -2]
|
||||
"""
|
||||
# if the collection is empty, returns empty
|
||||
if collection == []:
|
||||
return []
|
||||
|
||||
# get some information about the collection
|
||||
coll_len = len(collection)
|
||||
coll_max = max(collection)
|
||||
coll_min = min(collection)
|
||||
|
||||
# create the counting array
|
||||
counting_arr_length = coll_max + 1 - coll_min
|
||||
counting_arr = [0] * counting_arr_length
|
||||
|
||||
# count how much a number appears in the collection
|
||||
for number in collection:
|
||||
counting_arr[number - coll_min] += 1
|
||||
|
||||
# sum each position with it's predecessors. now, counting_arr[i] tells
|
||||
# us how many elements <= i has in the collection
|
||||
for i in range(1, counting_arr_length):
|
||||
counting_arr[i] = counting_arr[i] + counting_arr[i-1]
|
||||
|
||||
# create the output collection
|
||||
ordered = [0] * coll_len
|
||||
|
||||
# place the elements in the output, respecting the original order (stable
|
||||
# sort) from end to begin, updating counting_arr
|
||||
for i in reversed(range(0, coll_len)):
|
||||
ordered[counting_arr[collection[i] - coll_min]-1] = collection[i]
|
||||
counting_arr[collection[i] - coll_min] -= 1
|
||||
|
||||
return ordered
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import sys
|
||||
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
|
||||
# otherwise 2.x's input builtin function is too "smart"
|
||||
if sys.version_info.major < 3:
|
||||
input_function = raw_input
|
||||
else:
|
||||
input_function = input
|
||||
|
||||
user_input = input_function('Enter numbers separated by a comma:\n')
|
||||
unsorted = [int(item) for item in user_input.split(',')]
|
||||
print(counting_sort(unsorted))
|
|
@ -21,7 +21,7 @@ def gnome_sort(unsorted):
|
|||
if __name__ == '__main__':
|
||||
import sys
|
||||
|
||||
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
|
||||
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
|
||||
# otherwise 2.x's input builtin function is too "smart"
|
||||
if sys.version_info.major < 3:
|
||||
input_function = raw_input
|
||||
|
|
|
@ -41,7 +41,7 @@ def insertion_sort(collection):
|
|||
if __name__ == '__main__':
|
||||
import sys
|
||||
|
||||
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
|
||||
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
|
||||
# otherwise 2.x's input builtin function is too "smart"
|
||||
if sys.version_info.major < 3:
|
||||
input_function = raw_input
|
||||
|
|
|
@ -64,7 +64,7 @@ def merge_sort(collection):
|
|||
if __name__ == '__main__':
|
||||
import sys
|
||||
|
||||
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
|
||||
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
|
||||
# otherwise 2.x's input builtin function is too "smart"
|
||||
if sys.version_info.major < 3:
|
||||
input_function = raw_input
|
||||
|
|
|
@ -42,7 +42,7 @@ def quick_sort(ARRAY):
|
|||
if __name__ == '__main__':
|
||||
import sys
|
||||
|
||||
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
|
||||
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
|
||||
# otherwise 2.x's input builtin function is too "smart"
|
||||
if sys.version_info.major < 3:
|
||||
input_function = raw_input
|
||||
|
|
|
@ -2,19 +2,19 @@ def radixsort(lst):
|
|||
RADIX = 10
|
||||
maxLength = False
|
||||
tmp , placement = -1, 1
|
||||
|
||||
|
||||
while not maxLength:
|
||||
maxLength = True
|
||||
# declare and initialize buckets
|
||||
buckets = [list() for _ in range( RADIX )]
|
||||
|
||||
|
||||
# split lst between lists
|
||||
for i in lst:
|
||||
tmp = i / placement
|
||||
tmp = i // placement
|
||||
buckets[tmp % RADIX].append( i )
|
||||
if maxLength and tmp > 0:
|
||||
maxLength = False
|
||||
|
||||
|
||||
# empty lists into lst array
|
||||
a = 0
|
||||
for b in range( RADIX ):
|
||||
|
@ -22,6 +22,6 @@ def radixsort(lst):
|
|||
for i in buck:
|
||||
lst[a] = i
|
||||
a += 1
|
||||
|
||||
|
||||
# move to next
|
||||
placement *= RADIX
|
||||
|
|
|
@ -44,7 +44,7 @@ def selection_sort(collection):
|
|||
|
||||
if __name__ == '__main__':
|
||||
import sys
|
||||
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
|
||||
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
|
||||
# otherwise 2.x's input builtin function is too "smart"
|
||||
if sys.version_info.major < 3:
|
||||
input_function = raw_input
|
||||
|
|
|
@ -45,7 +45,7 @@ def shell_sort(collection):
|
|||
|
||||
if __name__ == '__main__':
|
||||
import sys
|
||||
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
|
||||
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
|
||||
# otherwise 2.x's input builtin function is too "smart"
|
||||
if sys.version_info.major < 3:
|
||||
input_function = raw_input
|
||||
|
|
81
sorts/timsort.py
Normal file
81
sorts/timsort.py
Normal file
|
@ -0,0 +1,81 @@
|
|||
def binary_search(lst, item, start, end):
|
||||
if start == end:
|
||||
if lst[start] > item:
|
||||
return start
|
||||
else:
|
||||
return start + 1
|
||||
if start > end:
|
||||
return start
|
||||
|
||||
mid = (start + end) // 2
|
||||
if lst[mid] < item:
|
||||
return binary_search(lst, item, mid + 1, end)
|
||||
elif lst[mid] > item:
|
||||
return binary_search(lst, item, start, mid - 1)
|
||||
else:
|
||||
return mid
|
||||
|
||||
|
||||
def insertion_sort(lst):
|
||||
length = len(lst)
|
||||
|
||||
for index in range(1, length):
|
||||
value = lst[index]
|
||||
pos = binary_search(lst, value, 0, index - 1)
|
||||
lst = lst[:pos] + [value] + lst[pos:index] + lst[index+1:]
|
||||
|
||||
return lst
|
||||
|
||||
|
||||
def merge(left, right):
|
||||
if not left:
|
||||
return right
|
||||
|
||||
if not right:
|
||||
return left
|
||||
|
||||
if left[0] < right[0]:
|
||||
return [left[0]] + merge(left[1:], right)
|
||||
|
||||
return [right[0]] + merge(left, right[1:])
|
||||
|
||||
|
||||
def timsort(lst):
|
||||
runs, sorted_runs = [], []
|
||||
length = len(lst)
|
||||
new_run = [lst[0]]
|
||||
sorted_array = []
|
||||
|
||||
for i in range(1, length):
|
||||
if i == length - 1:
|
||||
new_run.append(lst[i])
|
||||
runs.append(new_run)
|
||||
break
|
||||
|
||||
if lst[i] < lst[i - 1]:
|
||||
if not new_run:
|
||||
runs.append([lst[i - 1]])
|
||||
new_run.append(lst[i])
|
||||
else:
|
||||
runs.append(new_run)
|
||||
new_run = []
|
||||
else:
|
||||
new_run.append(lst[i])
|
||||
|
||||
for run in runs:
|
||||
sorted_runs.append(insertion_sort(run))
|
||||
|
||||
for run in sorted_runs:
|
||||
sorted_array = merge(sorted_array, run)
|
||||
|
||||
return sorted_array
|
||||
|
||||
|
||||
def main():
|
||||
|
||||
lst = [5,9,10,3,-4,5,178,92,46,-18,0,7]
|
||||
sorted_lst = timsort(lst)
|
||||
print(sorted_lst)
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
|
@ -84,7 +84,7 @@ if __name__ == '__main__':
|
|||
import sys
|
||||
|
||||
print("\n********* Binary Tree Traversals ************\n")
|
||||
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
|
||||
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
|
||||
# otherwise 2.x's input builtin function is too "smart"
|
||||
if sys.version_info.major < 3:
|
||||
input_function = raw_input
|
Loading…
Reference in New Issue
Block a user