Update dbscan.py

This commit is contained in:
tkgowtham 2024-10-02 15:43:16 +05:30 committed by GitHub
parent 8d86c62d56
commit 254854e832
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -1,20 +1,21 @@
import pandas as pd
import math
import matplotlib.pyplot as plt
from typing import dict, list
import pandas as pd
from typing import dict, list, optional
class DbScan:
"""
'''
DBSCAN Algorithm :
Density-Based Spatial Clustering Of Applications With Noise
Refer this website for more details : https://en.wikipedia.org/wiki/DBSCAN
Reference Website : https://en.wikipedia.org/wiki/DBSCAN
Reference YouTube Video : https://youtu.be/-p354tQsKrs?si=t1IxCFhrOB-RAcIU
Functions:
----------
__init__() : Constructor that sets minPts, radius and file
perform_dbscan() : Invoked by constructor and calculates the core and noise points and returns a dictionary.
print_dbscan() : Prints the core and noise points along with stating if the noise are border points or not.
perform_dbscan() : Invoked by constructor and calculates the core
and noise points and returns a dictionary.
print_dbscan() : Prints the core and noise points along
with stating if the noise are border points or not.
plot_dbscan() : Plots the points to show the core and noise point.
To create a object
@ -23,13 +24,17 @@ class DbScan:
obj = dbscan.DbScan(minpts, radius, file)
obj.print_dbscan()
obj.plot_dbscan()
"""
def __init__(self, minpts: int, radius: int, file: str) -> None:
"""
'''
def __init__(self, minpts : int, radius : int, file : optional[str] =
[{'x': 3, 'y': 7}, {'x': 4, 'y': 6}, {'x': 5, 'y': 5},
{'x': 6, 'y': 4},{'x': 7, 'y': 3}, {'x': 6, 'y': 2},
{'x': 7, 'y': 2}, {'x': 8, 'y': 4},{'x': 3, 'y': 3},
{'x': 2, 'y': 6}, {'x': 3, 'y': 5}, {'x': 2, 'y': 4}]
) -> None:
'''
Constructor
Attributes:
Args:
-----------
minpts (int) : Minimum number of points needed to be
within the radius to considered as core
@ -54,97 +59,111 @@ class DbScan:
6 | 4
7 | 3
-----
"""
'''
self.minpts = minpts
self.radius = radius
self.file = file
self.dict1 = self.perform_dbscan()
def perform_dbscan(self) -> dict[int, list[int]]:
"""
Parameters:
'''
Args:
-----------
None
None
Return:
--------
Dictionary with points and the list of points
that lie in its radius
"""
data = pd.read_csv(self.file)
Dictionary with points and the list
of points that lie in its radius
>>> result = DbScan(4, 1.9).perform_dbscan()
>>> for key in sorted(result):
... print(key, sorted(result[key]))
1 [1, 2, 10]
2 [1, 2, 3, 11]
3 [2, 3, 4]
4 [3, 4, 5]
5 [4, 5, 6, 7, 8]
6 [5, 6, 7]
7 [5, 6, 7]
8 [5, 8]
9 [9, 12]
10 [1, 10, 11]
11 [2, 10, 11, 12]
12 [9, 11, 12]
'''
data = pd.read_csv(self.file) if type(self.file) == type("str") else pd.DataFrame(self.file)
e = self.radius
dict1 = {}
for i in range(len(data)):
for j in range(len(data)):
dist = math.sqrt(
pow(data["x"][j] - data["x"][i], 2)
+ pow(data["y"][j] - data["y"][i], 2)
)
dist = math.sqrt(pow(data['x'][j] - data['x'][i],2)
+ pow(data['y'][j] - data['y'][i],2))
if dist < e:
if i + 1 in dict1:
dict1[i + 1].append(j + 1)
if i+1 in dict1:
dict1[i+1].append(j+1)
else:
dict1[i + 1] = [
j + 1,
]
dict1[i+1] = [j+1,]
return dict1
def print_dbscan(self) -> None:
"""
'''
Outputs:
--------
Prints each point and if it is a core or a noise (w/ border)
"""
>>> DbScan(4,1.9).print_dbscan()
1 [1, 2, 10] ---> Noise ---> Border
2 [1, 2, 3, 11] ---> Core
3 [2, 3, 4] ---> Noise ---> Border
4 [3, 4, 5] ---> Noise ---> Border
5 [4, 5, 6, 7, 8] ---> Core
6 [5, 6, 7] ---> Noise ---> Border
7 [5, 6, 7] ---> Noise ---> Border
8 [5, 8] ---> Noise ---> Border
9 [9, 12] ---> Noise
10 [1, 10, 11] ---> Noise ---> Border
11 [2, 10, 11, 12] ---> Core
12 [9, 11, 12] ---> Noise ---> Border
'''
for i in self.dict1:
print(i, " ", self.dict1[i], end=" ---> ")
print(i," ",self.dict1[i], end=' ---> ')
if len(self.dict1[i]) >= self.minpts:
print("Core")
else:
for j in self.dict1:
if (
i != j
and len(self.dict1[j]) >= self.minpts
and i in self.dict1[j]
):
print("Noise ---> Border")
break
if i != j and len(self.dict1[j]) >= self.minpts:
if i in self.dict1[j]:
print("Noise ---> Border")
break
else:
print("Noise")
def plot_dbscan(self) -> None:
"""
'''
Output:
-------
A matplotlib plot that show points as core and noise along
with the circle that lie within it.
"""
data = pd.read_csv(self.file)
>>> DbScan(4,1.9).plot_dbscan()
Plotted Successfully
'''
data = pd.read_csv(self.file) if type(self.file) == type("str") else pd.DataFrame(self.file)
e = self.radius
for i in self.dict1:
if len(self.dict1[i]) >= self.minpts:
plt.scatter(data["x"][i - 1], data["y"][i - 1], color="red")
circle = plt.Circle(
(data["x"][i - 1], data["y"][i - 1]), e, color="blue", fill=False
)
plt.scatter(data['x'][i-1], data['y'][i-1], color='red')
circle = plt.Circle((data['x'][i-1], data['y'][i-1]),
e, color='blue', fill=False)
plt.gca().add_artist(circle)
plt.text(
data["x"][i - 1],
data["y"][i - 1],
"P" + str(i),
ha="center",
va="bottom",
)
plt.text(data['x'][i-1], data['y'][i-1],
'P'+str(i), ha='center', va='bottom')
else:
plt.scatter(data["x"][i - 1], data["y"][i - 1], color="green")
plt.text(
data["x"][i - 1],
data["y"][i - 1],
"P" + str(i),
ha="center",
va="bottom",
)
plt.xlabel("X")
plt.ylabel("Y")
plt.title("DBSCAN Clustering")
plt.legend(["Core", "Noise"])
plt.scatter(data['x'][i-1], data['y'][i-1], color='green')
plt.text(data['x'][i-1], data['y'][i-1],
'P'+str(i), ha='center', va='bottom')
plt.xlabel('X')
plt.ylabel('Y')
plt.title('DBSCAN Clustering')
plt.legend(['Core','Noise'])
plt.show()
print("Plotted Successfully")