mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-02-17 06:48:09 +00:00
Resolved ruff checks
This commit is contained in:
parent
861618ef11
commit
2dc60f475b
|
@ -47,46 +47,46 @@ class RidgeRegression:
|
|||
scaled_features = (features - mean) / std
|
||||
return scaled_features, mean, std
|
||||
|
||||
def fit(self, X: np.ndarray, y: np.ndarray) -> None:
|
||||
def fit(self, x: np.ndarray, y: np.ndarray) -> None:
|
||||
"""
|
||||
Fit the Ridge Regression model to the training data.
|
||||
|
||||
:param X: Input features, shape (m, n)
|
||||
:param x: Input features, shape (m, n)
|
||||
:param y: Target values, shape (m,)
|
||||
"""
|
||||
X_scaled, mean, std = self.feature_scaling(X) # Normalize features
|
||||
m, n = X_scaled.shape
|
||||
x_scaled, mean, std = self.feature_scaling(x) # Normalize features
|
||||
m, n = x_scaled.shape
|
||||
self.theta = np.zeros(n) # Initialize weights to zeros
|
||||
|
||||
for i in range(self.iterations):
|
||||
predictions = X_scaled.dot(self.theta)
|
||||
for _ in range(self.iterations):
|
||||
predictions = x_scaled.dot(self.theta)
|
||||
error = predictions - y
|
||||
|
||||
# Compute gradient with L2 regularization
|
||||
gradient = (X_scaled.T.dot(error) + self.lambda_ * self.theta) / m
|
||||
gradient = (x_scaled.T.dot(error) + self.lambda_ * self.theta) / m
|
||||
self.theta -= self.alpha * gradient # Update weights
|
||||
|
||||
def predict(self, X: np.ndarray) -> np.ndarray:
|
||||
def predict(self, x: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
Predict values using the trained model.
|
||||
|
||||
:param X: Input features, shape (m, n)
|
||||
:param x: Input features, shape (m, n)
|
||||
:return: Predicted values, shape (m,)
|
||||
"""
|
||||
X_scaled, _, _ = self.feature_scaling(X) # Scale features using training data
|
||||
return X_scaled.dot(self.theta)
|
||||
x_scaled, _, _ = self.feature_scaling(x) # Scale features using training data
|
||||
return x_scaled.dot(self.theta)
|
||||
|
||||
def compute_cost(self, X: np.ndarray, y: np.ndarray) -> float:
|
||||
def compute_cost(self, x: np.ndarray, y: np.ndarray) -> float:
|
||||
"""
|
||||
Compute the cost function with regularization.
|
||||
|
||||
:param X: Input features, shape (m, n)
|
||||
:param x: Input features, shape (m, n)
|
||||
:param y: Target values, shape (m,)
|
||||
:return: Computed cost
|
||||
"""
|
||||
X_scaled, _, _ = self.feature_scaling(X) # Scale features using training data
|
||||
x_scaled, _, _ = self.feature_scaling(x) # Scale features using training data
|
||||
m = len(y)
|
||||
predictions = X_scaled.dot(self.theta)
|
||||
predictions = x_scaled.dot(self.theta)
|
||||
cost = (1 / (2 * m)) * np.sum((predictions - y) ** 2) + (
|
||||
self.lambda_ / (2 * m)
|
||||
) * np.sum(self.theta**2)
|
||||
|
@ -106,24 +106,24 @@ class RidgeRegression:
|
|||
# Example usage
|
||||
if __name__ == "__main__":
|
||||
# Load dataset
|
||||
df = pd.read_csv(
|
||||
data = pd.read_csv(
|
||||
"https://raw.githubusercontent.com/yashLadha/The_Math_of_Intelligence/master/Week1/ADRvsRating.csv"
|
||||
)
|
||||
X = df[["Rating"]].values # Feature: Rating
|
||||
y = df["ADR"].values # Target: ADR
|
||||
x = data[["Rating"]].to_numpy() # Feature: Rating
|
||||
y = data["ADR"].to_numpy() # Target: ADR
|
||||
y = (y - np.mean(y)) / np.std(y)
|
||||
|
||||
# Add bias term (intercept) to the feature matrix
|
||||
X = np.c_[np.ones(X.shape[0]), X] # Add intercept term
|
||||
x = np.c_[np.ones(X.shape[0]), x] # Add intercept term
|
||||
|
||||
# Initialize and train the Ridge Regression model
|
||||
model = RidgeRegression(alpha=0.01, lambda_=0.1, iterations=1000)
|
||||
model.fit(X, y)
|
||||
model.fit(x, y)
|
||||
|
||||
# Predictions
|
||||
predictions = model.predict(X)
|
||||
predictions = model.predict(x)
|
||||
|
||||
# Results
|
||||
print("Optimized Weights:", model.theta)
|
||||
print("Cost:", model.compute_cost(X, y))
|
||||
print("Cost:", model.compute_cost(x, y))
|
||||
print("Mean Absolute Error:", model.mean_absolute_error(y, predictions))
|
||||
|
|
Loading…
Reference in New Issue
Block a user