Python/machine_learning/ridge_regression.py
2024-10-22 23:58:50 +05:30

130 lines
4.4 KiB
Python

import numpy as np
import pandas as pd
class RidgeRegression:
def __init__(
self, alpha: float = 0.001, lambda_: float = 0.1, iterations: int = 1000
) -> None:
"""
Ridge Regression Constructor
:param alpha: Learning rate for gradient descent
:param lambda_: Regularization parameter (L2 regularization)
:param iterations: Number of iterations for gradient descent
"""
self.alpha = alpha
self.lambda_ = lambda_
self.iterations = iterations
self.theta = None
def feature_scaling(
self, features: np.ndarray
) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
"""
Normalize features to have mean 0 and standard deviation 1.
:param features: Input features, shape (m, n)
:return: Tuple containing:
- Scaled features
- Mean of each feature
- Standard deviation of each feature
Example:
>>> rr = RidgeRegression()
>>> features = np.array([[1, 2], [2, 3], [4, 6]])
>>> scaled_features, mean, std = rr.feature_scaling(features)
>>> np.allclose(scaled_features.mean(axis=0), 0)
True
>>> np.allclose(scaled_features.std(axis=0), 1)
True
"""
mean = np.mean(features, axis=0)
std = np.std(features, axis=0)
# Avoid division by zero for constant features (std = 0)
std[std == 0] = 1 # Set std=1 for constant features to avoid NaN
scaled_features = (features - mean) / std
return scaled_features, mean, std
def fit(self, x: np.ndarray, y: np.ndarray) -> None:
"""
Fit the Ridge Regression model to the training data.
:param x: Input features, shape (m, n)
:param y: Target values, shape (m,)
"""
x_scaled, mean, std = self.feature_scaling(x) # Normalize features
m, n = x_scaled.shape
self.theta = np.zeros(n) # Initialize weights to zeros
for _ in range(self.iterations):
predictions = x_scaled.dot(self.theta)
error = predictions - y
# Compute gradient with L2 regularization
gradient = (x_scaled.T.dot(error) + self.lambda_ * self.theta) / m
self.theta -= self.alpha * gradient # Update weights
def predict(self, x: np.ndarray) -> np.ndarray:
"""
Predict values using the trained model.
:param x: Input features, shape (m, n)
:return: Predicted values, shape (m,)
"""
x_scaled, _, _ = self.feature_scaling(x) # Scale features using training data
return x_scaled.dot(self.theta)
def compute_cost(self, x: np.ndarray, y: np.ndarray) -> float:
"""
Compute the cost function with regularization.
:param x: Input features, shape (m, n)
:param y: Target values, shape (m,)
:return: Computed cost
"""
x_scaled, _, _ = self.feature_scaling(x) # Scale features using training data
m = len(y)
predictions = x_scaled.dot(self.theta)
cost = (1 / (2 * m)) * np.sum((predictions - y) ** 2) + (
self.lambda_ / (2 * m)
) * np.sum(self.theta**2)
return cost
def mean_absolute_error(self, y_true: np.ndarray, y_pred: np.ndarray) -> float:
"""
Compute Mean Absolute Error (MAE) between true and predicted values.
:param y_true: Actual target values, shape (m,)
:param y_pred: Predicted target values, shape (m,)
:return: MAE
"""
return np.mean(np.abs(y_true - y_pred))
# Example usage
if __name__ == "__main__":
# Load dataset
data = pd.read_csv(
"https://raw.githubusercontent.com/yashLadha/The_Math_of_Intelligence/master/Week1/ADRvsRating.csv"
)
x = data[["Rating"]].to_numpy() # Feature: Rating
y = data["ADR"].to_numpy() # Target: ADR
y = (y - np.mean(y)) / np.std(y)
# Add bias term (intercept) to the feature matrix
x = np.c_[np.ones(X.shape[0]), x] # Add intercept term
# Initialize and train the Ridge Regression model
model = RidgeRegression(alpha=0.01, lambda_=0.1, iterations=1000)
model.fit(x, y)
# Predictions
predictions = model.predict(x)
# Results
print("Optimized Weights:", model.theta)
print("Cost:", model.compute_cost(x, y))
print("Mean Absolute Error:", model.mean_absolute_error(y, predictions))