mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-04-17 11:17:36 +00:00
Resolved ruff checks
This commit is contained in:
parent
861618ef11
commit
2dc60f475b
@ -47,46 +47,46 @@ class RidgeRegression:
|
|||||||
scaled_features = (features - mean) / std
|
scaled_features = (features - mean) / std
|
||||||
return scaled_features, mean, std
|
return scaled_features, mean, std
|
||||||
|
|
||||||
def fit(self, X: np.ndarray, y: np.ndarray) -> None:
|
def fit(self, x: np.ndarray, y: np.ndarray) -> None:
|
||||||
"""
|
"""
|
||||||
Fit the Ridge Regression model to the training data.
|
Fit the Ridge Regression model to the training data.
|
||||||
|
|
||||||
:param X: Input features, shape (m, n)
|
:param x: Input features, shape (m, n)
|
||||||
:param y: Target values, shape (m,)
|
:param y: Target values, shape (m,)
|
||||||
"""
|
"""
|
||||||
X_scaled, mean, std = self.feature_scaling(X) # Normalize features
|
x_scaled, mean, std = self.feature_scaling(x) # Normalize features
|
||||||
m, n = X_scaled.shape
|
m, n = x_scaled.shape
|
||||||
self.theta = np.zeros(n) # Initialize weights to zeros
|
self.theta = np.zeros(n) # Initialize weights to zeros
|
||||||
|
|
||||||
for i in range(self.iterations):
|
for _ in range(self.iterations):
|
||||||
predictions = X_scaled.dot(self.theta)
|
predictions = x_scaled.dot(self.theta)
|
||||||
error = predictions - y
|
error = predictions - y
|
||||||
|
|
||||||
# Compute gradient with L2 regularization
|
# Compute gradient with L2 regularization
|
||||||
gradient = (X_scaled.T.dot(error) + self.lambda_ * self.theta) / m
|
gradient = (x_scaled.T.dot(error) + self.lambda_ * self.theta) / m
|
||||||
self.theta -= self.alpha * gradient # Update weights
|
self.theta -= self.alpha * gradient # Update weights
|
||||||
|
|
||||||
def predict(self, X: np.ndarray) -> np.ndarray:
|
def predict(self, x: np.ndarray) -> np.ndarray:
|
||||||
"""
|
"""
|
||||||
Predict values using the trained model.
|
Predict values using the trained model.
|
||||||
|
|
||||||
:param X: Input features, shape (m, n)
|
:param x: Input features, shape (m, n)
|
||||||
:return: Predicted values, shape (m,)
|
:return: Predicted values, shape (m,)
|
||||||
"""
|
"""
|
||||||
X_scaled, _, _ = self.feature_scaling(X) # Scale features using training data
|
x_scaled, _, _ = self.feature_scaling(x) # Scale features using training data
|
||||||
return X_scaled.dot(self.theta)
|
return x_scaled.dot(self.theta)
|
||||||
|
|
||||||
def compute_cost(self, X: np.ndarray, y: np.ndarray) -> float:
|
def compute_cost(self, x: np.ndarray, y: np.ndarray) -> float:
|
||||||
"""
|
"""
|
||||||
Compute the cost function with regularization.
|
Compute the cost function with regularization.
|
||||||
|
|
||||||
:param X: Input features, shape (m, n)
|
:param x: Input features, shape (m, n)
|
||||||
:param y: Target values, shape (m,)
|
:param y: Target values, shape (m,)
|
||||||
:return: Computed cost
|
:return: Computed cost
|
||||||
"""
|
"""
|
||||||
X_scaled, _, _ = self.feature_scaling(X) # Scale features using training data
|
x_scaled, _, _ = self.feature_scaling(x) # Scale features using training data
|
||||||
m = len(y)
|
m = len(y)
|
||||||
predictions = X_scaled.dot(self.theta)
|
predictions = x_scaled.dot(self.theta)
|
||||||
cost = (1 / (2 * m)) * np.sum((predictions - y) ** 2) + (
|
cost = (1 / (2 * m)) * np.sum((predictions - y) ** 2) + (
|
||||||
self.lambda_ / (2 * m)
|
self.lambda_ / (2 * m)
|
||||||
) * np.sum(self.theta**2)
|
) * np.sum(self.theta**2)
|
||||||
@ -106,24 +106,24 @@ class RidgeRegression:
|
|||||||
# Example usage
|
# Example usage
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
# Load dataset
|
# Load dataset
|
||||||
df = pd.read_csv(
|
data = pd.read_csv(
|
||||||
"https://raw.githubusercontent.com/yashLadha/The_Math_of_Intelligence/master/Week1/ADRvsRating.csv"
|
"https://raw.githubusercontent.com/yashLadha/The_Math_of_Intelligence/master/Week1/ADRvsRating.csv"
|
||||||
)
|
)
|
||||||
X = df[["Rating"]].values # Feature: Rating
|
x = data[["Rating"]].to_numpy() # Feature: Rating
|
||||||
y = df["ADR"].values # Target: ADR
|
y = data["ADR"].to_numpy() # Target: ADR
|
||||||
y = (y - np.mean(y)) / np.std(y)
|
y = (y - np.mean(y)) / np.std(y)
|
||||||
|
|
||||||
# Add bias term (intercept) to the feature matrix
|
# Add bias term (intercept) to the feature matrix
|
||||||
X = np.c_[np.ones(X.shape[0]), X] # Add intercept term
|
x = np.c_[np.ones(X.shape[0]), x] # Add intercept term
|
||||||
|
|
||||||
# Initialize and train the Ridge Regression model
|
# Initialize and train the Ridge Regression model
|
||||||
model = RidgeRegression(alpha=0.01, lambda_=0.1, iterations=1000)
|
model = RidgeRegression(alpha=0.01, lambda_=0.1, iterations=1000)
|
||||||
model.fit(X, y)
|
model.fit(x, y)
|
||||||
|
|
||||||
# Predictions
|
# Predictions
|
||||||
predictions = model.predict(X)
|
predictions = model.predict(x)
|
||||||
|
|
||||||
# Results
|
# Results
|
||||||
print("Optimized Weights:", model.theta)
|
print("Optimized Weights:", model.theta)
|
||||||
print("Cost:", model.compute_cost(X, y))
|
print("Cost:", model.compute_cost(x, y))
|
||||||
print("Mean Absolute Error:", model.mean_absolute_error(y, predictions))
|
print("Mean Absolute Error:", model.mean_absolute_error(y, predictions))
|
||||||
|
Loading…
x
Reference in New Issue
Block a user