mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-02-17 14:58:10 +00:00
Fully refactored the rod cutting module. (#1169)
* changing typo * fully refactored the rod-cutting module * more documentations * rewording
This commit is contained in:
parent
f31a812c46
commit
2dfe01e4d8
|
@ -1,57 +1,193 @@
|
|||
from typing import List
|
||||
"""
|
||||
This module provides two implementations for the rod-cutting problem:
|
||||
1. A naive recursive implementation which has an exponential runtime
|
||||
2. Two dynamic programming implementations which have quadratic runtime
|
||||
|
||||
def rod_cutting(prices: List[int],length: int) -> int:
|
||||
The rod-cutting problem is the problem of finding the maximum possible revenue
|
||||
obtainable from a rod of length ``n`` given a list of prices for each integral piece
|
||||
of the rod. The maximum revenue can thus be obtained by cutting the rod and selling the
|
||||
pieces separately or not cutting it at all if the price of it is the maximum obtainable.
|
||||
|
||||
"""
|
||||
|
||||
|
||||
def naive_cut_rod_recursive(n: int, prices: list):
|
||||
"""
|
||||
Given a rod of length n and array of prices that indicate price at each length.
|
||||
Determine the maximum value obtainable by cutting up the rod and selling the pieces
|
||||
|
||||
>>> rod_cutting([1,5,8,9],4)
|
||||
Solves the rod-cutting problem via naively without using the benefit of dynamic programming.
|
||||
The results is the same sub-problems are solved several times leading to an exponential runtime
|
||||
|
||||
Runtime: O(2^n)
|
||||
|
||||
Arguments
|
||||
-------
|
||||
n: int, the length of the rod
|
||||
prices: list, the prices for each piece of rod. ``p[i-i]`` is the
|
||||
price for a rod of length ``i``
|
||||
|
||||
Returns
|
||||
-------
|
||||
The maximum revenue obtainable for a rod of length n given the list of prices for each piece.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> naive_cut_rod_recursive(4, [1, 5, 8, 9])
|
||||
10
|
||||
>>> rod_cutting([1,1,1],3)
|
||||
3
|
||||
>>> rod_cutting([1,2,3], -1)
|
||||
Traceback (most recent call last):
|
||||
ValueError: Given integer must be greater than 1, not -1
|
||||
>>> rod_cutting([1,2,3], 3.2)
|
||||
Traceback (most recent call last):
|
||||
TypeError: Must be int, not float
|
||||
>>> rod_cutting([], 3)
|
||||
Traceback (most recent call last):
|
||||
AssertionError: prices list is shorted than length: 3
|
||||
|
||||
|
||||
|
||||
Args:
|
||||
prices: list indicating price at each length, where prices[0] = 0 indicating rod of zero length has no value
|
||||
length: length of rod
|
||||
|
||||
Returns:
|
||||
Maximum revenue attainable by cutting up the rod in any way.
|
||||
>>> naive_cut_rod_recursive(10, [1, 5, 8, 9, 10, 17, 17, 20, 24, 30])
|
||||
30
|
||||
"""
|
||||
|
||||
prices.insert(0, 0)
|
||||
if not isinstance(length, int):
|
||||
raise TypeError('Must be int, not {0}'.format(type(length).__name__))
|
||||
if length < 0:
|
||||
raise ValueError('Given integer must be greater than 1, not {0}'.format(length))
|
||||
assert len(prices) - 1 >= length, "prices list is shorted than length: {0}".format(length)
|
||||
|
||||
return rod_cutting_recursive(prices, length)
|
||||
|
||||
def rod_cutting_recursive(prices: List[int],length: int) -> int:
|
||||
#base case
|
||||
if length == 0:
|
||||
_enforce_args(n, prices)
|
||||
if n == 0:
|
||||
return 0
|
||||
value = float('-inf')
|
||||
for firstCutLocation in range(1,length+1):
|
||||
value = max(value, prices[firstCutLocation]+rod_cutting_recursive(prices,length - firstCutLocation))
|
||||
return value
|
||||
max_revue = float("-inf")
|
||||
for i in range(1, n + 1):
|
||||
max_revue = max(max_revue, prices[i - 1] + naive_cut_rod_recursive(n - i, prices))
|
||||
|
||||
return max_revue
|
||||
|
||||
|
||||
def top_down_cut_rod(n: int, prices: list):
|
||||
"""
|
||||
Constructs a top-down dynamic programming solution for the rod-cutting problem
|
||||
via memoization. This function serves as a wrapper for _top_down_cut_rod_recursive
|
||||
|
||||
Runtime: O(n^2)
|
||||
|
||||
Arguments
|
||||
--------
|
||||
n: int, the length of the rod
|
||||
prices: list, the prices for each piece of rod. ``p[i-i]`` is the
|
||||
price for a rod of length ``i``
|
||||
|
||||
Note
|
||||
----
|
||||
For convenience and because Python's lists using 0-indexing, length(max_rev) = n + 1,
|
||||
to accommodate for the revenue obtainable from a rod of length 0.
|
||||
|
||||
Returns
|
||||
-------
|
||||
The maximum revenue obtainable for a rod of length n given the list of prices for each piece.
|
||||
|
||||
Examples
|
||||
-------
|
||||
>>> top_down_cut_rod(4, [1, 5, 8, 9])
|
||||
10
|
||||
>>> top_down_cut_rod(10, [1, 5, 8, 9, 10, 17, 17, 20, 24, 30])
|
||||
30
|
||||
"""
|
||||
_enforce_args(n, prices)
|
||||
max_rev = [float("-inf") for _ in range(n + 1)]
|
||||
return _top_down_cut_rod_recursive(n, prices, max_rev)
|
||||
|
||||
|
||||
def _top_down_cut_rod_recursive(n: int, prices: list, max_rev: list):
|
||||
"""
|
||||
Constructs a top-down dynamic programming solution for the rod-cutting problem
|
||||
via memoization.
|
||||
|
||||
Runtime: O(n^2)
|
||||
|
||||
Arguments
|
||||
--------
|
||||
n: int, the length of the rod
|
||||
prices: list, the prices for each piece of rod. ``p[i-i]`` is the
|
||||
price for a rod of length ``i``
|
||||
max_rev: list, the computed maximum revenue for a piece of rod.
|
||||
``max_rev[i]`` is the maximum revenue obtainable for a rod of length ``i``
|
||||
|
||||
Returns
|
||||
-------
|
||||
The maximum revenue obtainable for a rod of length n given the list of prices for each piece.
|
||||
"""
|
||||
if max_rev[n] >= 0:
|
||||
return max_rev[n]
|
||||
elif n == 0:
|
||||
return 0
|
||||
else:
|
||||
max_revenue = float("-inf")
|
||||
for i in range(1, n + 1):
|
||||
max_revenue = max(max_revenue, prices[i - 1] + _top_down_cut_rod_recursive(n - i, prices, max_rev))
|
||||
|
||||
max_rev[n] = max_revenue
|
||||
|
||||
return max_rev[n]
|
||||
|
||||
|
||||
def bottom_up_cut_rod(n: int, prices: list):
|
||||
"""
|
||||
Constructs a bottom-up dynamic programming solution for the rod-cutting problem
|
||||
|
||||
Runtime: O(n^2)
|
||||
|
||||
Arguments
|
||||
----------
|
||||
n: int, the maximum length of the rod.
|
||||
prices: list, the prices for each piece of rod. ``p[i-i]`` is the
|
||||
price for a rod of length ``i``
|
||||
|
||||
Returns
|
||||
-------
|
||||
The maximum revenue obtainable from cutting a rod of length n given
|
||||
the prices for each piece of rod p.
|
||||
|
||||
Examples
|
||||
-------
|
||||
>>> bottom_up_cut_rod(4, [1, 5, 8, 9])
|
||||
10
|
||||
>>> bottom_up_cut_rod(10, [1, 5, 8, 9, 10, 17, 17, 20, 24, 30])
|
||||
30
|
||||
"""
|
||||
_enforce_args(n, prices)
|
||||
|
||||
# length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of length 0.
|
||||
max_rev = [float("-inf") for _ in range(n + 1)]
|
||||
max_rev[0] = 0
|
||||
|
||||
for i in range(1, n + 1):
|
||||
max_revenue_i = max_rev[i]
|
||||
for j in range(1, i + 1):
|
||||
max_revenue_i = max(max_revenue_i, prices[j - 1] + max_rev[i - j])
|
||||
|
||||
max_rev[i] = max_revenue_i
|
||||
|
||||
return max_rev[n]
|
||||
|
||||
|
||||
def _enforce_args(n: int, prices: list):
|
||||
"""
|
||||
Basic checks on the arguments to the rod-cutting algorithms
|
||||
|
||||
n: int, the length of the rod
|
||||
prices: list, the price list for each piece of rod.
|
||||
|
||||
Throws ValueError:
|
||||
|
||||
if n is negative or there are fewer items in the price list than the length of the rod
|
||||
"""
|
||||
if n < 0:
|
||||
raise ValueError(f"n must be greater than or equal to 0. Got n = {n}")
|
||||
|
||||
if n > len(prices):
|
||||
raise ValueError(f"Each integral piece of rod must have a corresponding "
|
||||
f"price. Got n = {n} but length of prices = {len(prices)}")
|
||||
|
||||
|
||||
def main():
|
||||
assert rod_cutting([1,5,8,9,10,17,17,20,24,30],10) == 30
|
||||
# print(rod_cutting([],0))
|
||||
prices = [6, 10, 12, 15, 20, 23]
|
||||
n = len(prices)
|
||||
|
||||
# the best revenue comes from cutting the rod into 6 pieces, each
|
||||
# of length 1 resulting in a revenue of 6 * 6 = 36.
|
||||
expected_max_revenue = 36
|
||||
|
||||
max_rev_top_down = top_down_cut_rod(n, prices)
|
||||
max_rev_bottom_up = bottom_up_cut_rod(n, prices)
|
||||
max_rev_naive = naive_cut_rod_recursive(n, prices)
|
||||
|
||||
assert expected_max_revenue == max_rev_top_down
|
||||
assert max_rev_top_down == max_rev_bottom_up
|
||||
assert max_rev_bottom_up == max_rev_naive
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user