mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-23 21:11:08 +00:00
[pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
This commit is contained in:
parent
b1353dddd4
commit
2eeb450e2d
|
@ -3,14 +3,20 @@ import pandas as pd
|
|||
|
||||
|
||||
class RidgeRegression:
|
||||
def __init__(self, alpha:float=0.001, regularization_param:float=0.1, num_iterations:int=1000) -> None:
|
||||
self.alpha:float = alpha
|
||||
self.regularization_param:float = regularization_param
|
||||
self.num_iterations:int = num_iterations
|
||||
self.theta:np.ndarray = None
|
||||
def __init__(
|
||||
self,
|
||||
alpha: float = 0.001,
|
||||
regularization_param: float = 0.1,
|
||||
num_iterations: int = 1000,
|
||||
) -> None:
|
||||
self.alpha: float = alpha
|
||||
self.regularization_param: float = regularization_param
|
||||
self.num_iterations: int = num_iterations
|
||||
self.theta: np.ndarray = None
|
||||
|
||||
|
||||
def feature_scaling(self, X:np.ndarray) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
|
||||
def feature_scaling(
|
||||
self, X: np.ndarray
|
||||
) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
|
||||
mean = np.mean(X, axis=0)
|
||||
std = np.std(X, axis=0)
|
||||
|
||||
|
@ -20,13 +26,11 @@ class RidgeRegression:
|
|||
X_scaled = (X - mean) / std
|
||||
return X_scaled, mean, std
|
||||
|
||||
|
||||
def fit(self, X:np.ndarray, y:np.ndarray) -> None:
|
||||
def fit(self, X: np.ndarray, y: np.ndarray) -> None:
|
||||
X_scaled, mean, std = self.feature_scaling(X)
|
||||
m, n = X_scaled.shape
|
||||
self.theta = np.zeros(n) # initializing weights to zeros
|
||||
|
||||
|
||||
for i in range(self.num_iterations):
|
||||
predictions = X_scaled.dot(self.theta)
|
||||
error = predictions - y
|
||||
|
@ -37,13 +41,11 @@ class RidgeRegression:
|
|||
) / m
|
||||
self.theta -= self.alpha * gradient # updating weights
|
||||
|
||||
|
||||
def predict(self, X:np.ndarray) -> np.ndarray:
|
||||
def predict(self, X: np.ndarray) -> np.ndarray:
|
||||
X_scaled, _, _ = self.feature_scaling(X)
|
||||
return X_scaled.dot(self.theta)
|
||||
|
||||
|
||||
def compute_cost(self, X:np.ndarray, y:np.ndarray) -> float:
|
||||
def compute_cost(self, X: np.ndarray, y: np.ndarray) -> float:
|
||||
X_scaled, _, _ = self.feature_scaling(X)
|
||||
m = len(y)
|
||||
|
||||
|
@ -53,8 +55,7 @@ class RidgeRegression:
|
|||
) * np.sum(self.theta**2)
|
||||
return cost
|
||||
|
||||
|
||||
def mean_absolute_error(self, y_true:np.ndarray, y_pred:np.ndarray) -> float:
|
||||
def mean_absolute_error(self, y_true: np.ndarray, y_pred: np.ndarray) -> float:
|
||||
return np.mean(np.abs(y_true - y_pred))
|
||||
|
||||
|
||||
|
@ -66,7 +67,7 @@ if __name__ == "__main__":
|
|||
y = (y - np.mean(y)) / np.std(y)
|
||||
|
||||
# added bias term to the feature matrix
|
||||
X = np.c_[np.ones(X.shape[0]), X]
|
||||
X = np.c_[np.ones(X.shape[0]), X]
|
||||
|
||||
# initialize and train the ridge regression model
|
||||
model = RidgeRegression(alpha=0.01, regularization_param=0.1, num_iterations=1000)
|
||||
|
|
Loading…
Reference in New Issue
Block a user