mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-27 23:11:09 +00:00
implementation of sorted vector machines (#1156)
* svm.py for issue #840 I would like to add the Support Vector Machine algorithm implemented in Python 3.6.7 Requirements: - sklearn * update svm.py * update svm.py * Update and renamed to sorted_vector_machines.py * Updated sorted_vector_machines.py
This commit is contained in:
parent
e694e596a3
commit
2f8516e561
54
machine_learning/sorted_vector_machines.py
Normal file
54
machine_learning/sorted_vector_machines.py
Normal file
|
@ -0,0 +1,54 @@
|
|||
from sklearn.datasets import load_iris
|
||||
from sklearn import svm
|
||||
from sklearn.model_selection import train_test_split
|
||||
import doctest
|
||||
|
||||
# different functions implementing different types of SVM's
|
||||
def NuSVC(train_x, train_y):
|
||||
svc_NuSVC = svm.NuSVC()
|
||||
svc_NuSVC.fit(train_x, train_y)
|
||||
return svc_NuSVC
|
||||
|
||||
|
||||
def Linearsvc(train_x, train_y):
|
||||
svc_linear = svm.LinearSVC()
|
||||
svc_linear.fit(train_x, train_y)
|
||||
return svc_linear
|
||||
|
||||
|
||||
def SVC(train_x, train_y):
|
||||
# svm.SVC(C=1.0, kernel='rbf', degree=3, gamma=0.0, coef0=0.0, shrinking=True, probability=False,tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, random_state=None)
|
||||
# various parameters like "kernal","gamma","C" can effectively tuned for a given machine learning model.
|
||||
SVC = svm.SVC(gamma="auto")
|
||||
SVC.fit(train_x, train_y)
|
||||
return SVC
|
||||
|
||||
|
||||
def test(X_new):
|
||||
"""
|
||||
3 test cases to be passed
|
||||
an array containing the sepal length (cm), sepal width (cm),petal length (cm),petal width (cm)
|
||||
based on which the target name will be predicted
|
||||
>>> test([1,2,1,4])
|
||||
'virginica'
|
||||
>>> test([5, 2, 4, 1])
|
||||
'versicolor'
|
||||
>>> test([6,3,4,1])
|
||||
'versicolor'
|
||||
|
||||
"""
|
||||
iris = load_iris()
|
||||
# splitting the dataset to test and train
|
||||
train_x, test_x, train_y, test_y = train_test_split(
|
||||
iris["data"], iris["target"], random_state=4
|
||||
)
|
||||
# any of the 3 types of SVM can be used
|
||||
# current_model=SVC(train_x, train_y)
|
||||
# current_model=NuSVC(train_x, train_y)
|
||||
current_model = Linearsvc(train_x, train_y)
|
||||
prediction = current_model.predict([X_new])
|
||||
return iris["target_names"][prediction][0]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
doctest.testmod()
|
Loading…
Reference in New Issue
Block a user