Implemented input check

This commit is contained in:
ricca 2023-10-03 18:28:37 +02:00
parent 2759947a48
commit 37184e21de

View File

@ -11,7 +11,7 @@ from sklearn.datasets import fetch_20newsgroups
from sklearn.metrics import accuracy_score
def group_data_by_target(targets):
def group_indices_by_target(targets):
"""
Associates to each target label the indices of the examples with that label
@ -22,21 +22,21 @@ def group_data_by_target(targets):
Returns
----------
grouped_data : dict of (label : list)
Maps each target label to the list of indices of the examples with that label
grouped_indices : dict of (label : list)
Maps each target label to the list of indices of the examples with that label
Example
----------
>>> y = np.array([1, 2, 3, 1, 2, 5])
>>> group_data_by_target(y)
>>> group_indices_by_target(y)
{1: [0, 3], 2: [1, 4], 3: [2], 5: [5]}
"""
grouped_data = {}
grouped_indices = {}
for i, y in enumerate(targets):
if y not in grouped_data:
grouped_data[y] = []
grouped_data[y].append(i)
return grouped_data
if y not in grouped_indices:
grouped_indices[y] = []
grouped_indices[y].append(i)
return grouped_indices
class MultinomialNBClassifier:
@ -46,6 +46,16 @@ class MultinomialNBClassifier:
self.priors = None
self.alpha = alpha
def _check_X(self, X):
if not sparse.issparse(X):
raise ValueError("Matrix X must be an instance of scipy.sparse.csr_matrix")
def _check_X_y(self, X, y):
self._check_X(X)
if X.shape[0] != len(y):
raise ValueError(
"The expected dimension for array y is (" + str(X.shape[0]) + ",), but got (" + str(len(y)) + ",)")
def fit(self, X, y):
"""
Parameters
@ -56,16 +66,15 @@ class MultinomialNBClassifier:
y : array-like of shape (n_samples,)
Target labels
"""
if not sparse.issparse(X):
raise ValueError("Matrix X must be an instance of scipy.sparse.csr_matrix")
self._check_X_y(X, y)
n_examples, n_features = X.shape
grouped_data = group_data_by_target(y)
self.classes = list(grouped_data.keys())
grouped_indices = group_indices_by_target(y)
self.classes = list(grouped_indices.keys())
self.priors = np.zeros(shape=len(self.classes))
self.features_probs = np.zeros(shape=(len(self.classes), n_features))
for i, class_i in enumerate(self.classes):
data_class_i = X[grouped_data[class_i]]
data_class_i = X[grouped_indices[class_i]]
prior_class_i = data_class_i.shape[0] / n_examples
self.priors[i] = prior_class_i
tot_features_count = data_class_i.sum() # count of all features in class_i
@ -98,8 +107,7 @@ class MultinomialNBClassifier:
>>> model.predict(X[2:3])
array([3])
"""
if not sparse.issparse(X):
raise ValueError("Matrix X must be an instance of scipy.sparse.csr_matrix")
self._check_X(X)
y_pred = []
log_features_probs = np.log(self.features_probs)
log_priors = np.log(self.priors)
@ -126,7 +134,7 @@ def main():
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
print("Accuracy of Naive Bayes text classifier: " + str(accuracy_score(y_test, y_pred)))
print("Accuracy of naive bayes text classifier: " + str(accuracy_score(y_test, y_pred)))
if __name__ == "__main__":