Merge pull request #2 from TheAlgorithms/master

merge from main.
This commit is contained in:
Anurag Kumar 2017-10-20 22:39:25 +05:30 committed by GitHub
commit 44ad272ba4
14 changed files with 576 additions and 200 deletions

View File

@ -7,40 +7,42 @@ class Node:
def __init__(self, label):
self.label = label
self.left = None
self.rigt = None
self.parent = None
self._parent = None
self._left = None
self._right = None
self.height = 0
def getLabel(self):
return self.label
@property
def right(self):
return self._right
def setLabel(self, label):
self.label = label
@right.setter
def right(self, node):
if node is not None:
node._parent = self
self._right = node
def getLeft(self):
return self.left
@property
def left(self):
return self._left
def setLeft(self, left):
self.left = left
@left.setter
def left(self, node):
if node is not None:
node._parent = self
self._left = node
def getRight(self):
return self.rigt
@property
def parent(self):
return self._parent
def setRight(self, right):
self.rigt = right
def getParent(self):
return self.parent
def setParent(self, parent):
self.parent = parent
def setHeight(self, height):
self.height = height
def getHeight(self, height):
return self.height
@parent.setter
def parent(self, node):
if node is not None:
self._parent = node
self.height = self.parent.height + 1
else:
self.height = 0
class AVL:
@ -51,8 +53,10 @@ class AVL:
def insert(self, value):
node = Node(value)
if self.root is None:
self.root = node
self.root.height = 0
self.size = 1
else:
# Same as Binary Tree
@ -64,63 +68,77 @@ class AVL:
dad_node = curr_node
if node.getLabel() < curr_node.getLabel():
curr_node = curr_node.getLeft()
if node.label < curr_node.label:
curr_node = curr_node.left
else:
curr_node = curr_node.getRight()
curr_node = curr_node.right
else:
if node.getLabel() < dad_node.getLabel():
dad_node.setLeft(node)
dad_node.setHeight(dad_node.getHeight() + 1)
if (dad_node.getRight().getHeight() -
dad_node.getLeft.getHeight() > 1):
self.rebalance(dad_node)
node.height = dad_node.height
dad_node.height += 1
if node.label < dad_node.label:
dad_node.left = node
else:
dad_node.setRight(node)
dad_node.setHeight(dad_node.getHeight() + 1)
if (dad_node.getRight().getHeight() -
dad_node.getLeft.getHeight() > 1):
self.rebalance(dad_node)
dad_node.right = node
self.rebalance(node)
self.size += 1
break
def rebalance(self, node):
if (node.getRight().getHeight() -
node.getLeft.getHeight() > 1):
if (node.getRight().getHeight() >
node.getLeft.getHeight()):
pass
else:
pass
pass
elif (node.getRight().getHeight() -
node.getLeft.getHeight() > 2):
if (node.getRight().getHeight() >
node.getLeft.getHeight()):
pass
else:
pass
pass
pass
n = node
while n is not None:
height_right = n.height
height_left = n.height
if n.right is not None:
height_right = n.right.height
if n.left is not None:
height_left = n.left.height
if abs(height_left - height_right) > 1:
if height_left > height_right:
left_child = n.left
if left_child is not None:
h_right = (right_child.right.height
if (right_child.right is not None) else 0)
h_left = (right_child.left.height
if (right_child.left is not None) else 0)
if (h_left > h_right):
self.rotate_left(n)
break
else:
self.double_rotate_right(n)
break
else:
right_child = n.right
if right_child is not None:
h_right = (right_child.right.height
if (right_child.right is not None) else 0)
h_left = (right_child.left.height
if (right_child.left is not None) else 0)
if (h_left > h_right):
self.double_rotate_left(n)
break
else:
self.rotate_right(n)
break
n = n.parent
def rotate_left(self, node):
# TODO: is this pythonic enought?
aux = node.getLabel()
node = aux.getRight()
node.setHeight(node.getHeight() - 1)
node.setLeft(Node(aux))
node.getLeft().setHeight(node.getHeight() + 1)
node.getRight().setHeight(node.getRight().getHeight() - 1)
aux = node.parent.label
node.parent.label = node.label
node.parent.right = Node(aux)
node.parent.right.height = node.parent.height + 1
node.parent.left = node.right
def rotate_right(self, node):
aux = node.getLabel()
node = aux.getLeft()
node.setHeight(node.getHeight() - 1)
node.setRight(Node(aux))
node.getLeft().setHeight(node.getHeight() + 1)
node.getLeft().setHeight(node.getLeft().getHeight() - 1)
aux = node.parent.label
node.parent.label = node.label
node.parent.left = Node(aux)
node.parent.left.height = node.parent.height + 1
node.parent.right = node.right
def double_rotate_left(self, node):
self.rotate_right(node.getRight().getRight())
@ -129,3 +147,34 @@ class AVL:
def double_rotate_right(self, node):
self.rotate_left(node.getLeft().getLeft())
self.rotate_right(node)
def empty(self):
if self.root is None:
return True
return False
def preShow(self, curr_node):
if curr_node is not None:
self.preShow(curr_node.left)
print(curr_node.label, end=" ")
self.preShow(curr_node.right)
def preorder(self, curr_node):
if curr_node is not None:
self.preShow(curr_node.left)
self.preShow(curr_node.right)
print(curr_node.label, end=" ")
def getRoot(self):
return self.root
t = AVL()
t.insert(1)
t.insert(2)
t.insert(3)
# t.preShow(t.root)
# print("\n")
# t.insert(4)
# t.insert(5)
# t.preShow(t.root)
# t.preorden(t.root)

View File

@ -68,7 +68,7 @@ class BinarySearchTree:
return False
def preShow(self, curr_node):
if curr_node is None:
if curr_node is not None:
print(curr_node.getLabel(), end=" ")
self.preShow(curr_node.getLeft())

View File

@ -1,27 +0,0 @@
# Author: OMKAR PATHAK
import Stack
def parseParenthesis(string):
balanced = 1
index = 0
myStack = Stack.Stack(len(string))
while (index < len(string)) and (balanced == 1):
check = string[index]
if check == '(':
myStack.push(check)
else:
if myStack.isEmpty():
balanced = 0
else:
myStack.pop()
index += 1
if balanced == 1 and myStack.isEmpty():
return True
else:
return False
if __name__ == '__main__':
print(parseParenthesis('((()))')) # True
print(parseParenthesis('((())')) # False

View File

@ -1,48 +0,0 @@
# Author: OMKAR PATHAK
import Stack
def isOperand(char):
return (ord(char) >= ord('a') and ord(char) <= ord('z')) or (ord(char) >= ord('A') and ord(char) <= ord('Z'))
def precedence(char):
if char == '+' or char == '-':
return 1
elif char == '*' or char == '/':
return 2
elif char == '^':
return 3
else:
return -1
def infixToPostfix(myExp, myStack):
postFix = []
for i in range(len(myExp)):
if (isOperand(myExp[i])):
postFix.append(myExp[i])
elif(myExp[i] == '('):
myStack.push(myExp[i])
elif(myExp[i] == ')'):
topOperator = myStack.pop()
while(not myStack.isEmpty() and topOperator != '('):
postFix.append(topOperator)
topOperator = myStack.pop()
else:
while (not myStack.isEmpty()) and (precedence(myExp[i]) <= precedence(myStack.peek())):
postFix.append(myStack.pop())
myStack.push(myExp[i])
while(not myStack.isEmpty()):
postFix.append(myStack.pop())
return ' '.join(postFix)
if __name__ == '__main__':
myExp = 'a+b*(c^d-e)^(f+g*h)-i'
myExp = [i for i in myExp]
print('Infix:',' '.join(myExp))
myStack = Stack.Stack(len(myExp))
print('Postfix:',infixToPostfix(myExp, myStack))
# OUTPUT:
# Infix: a + b * ( c ^ d - e ) ^ ( f + g * h ) - i
# Postfix: a b c d ^ e - f g h * + ^ * + i -

View File

@ -1,50 +0,0 @@
# Author: OMKAR PATHAK
class Stack(object):
def __init__(self, limit = 10):
self.stack = []
self.limit = limit
# for printing the stack contents
def __str__(self):
return ' '.join([str(i) for i in self.stack])
# for pushing an element on to the stack
def push(self, data):
if len(self.stack) >= self.limit:
print('Stack Overflow')
else:
self.stack.append(data)
# for popping the uppermost element
def pop(self):
if len(self.stack) <= 0:
return -1
else:
return self.stack.pop()
# for peeking the top-most element of the stack
def peek(self):
if len(self.stack) <= 0:
return -1
else:
return self.stack[len(self.stack) - 1]
# to check if stack is empty
def isEmpty(self):
return self.stack == []
# for checking the size of stack
def size(self):
return len(self.stack)
if __name__ == '__main__':
myStack = Stack()
for i in range(10):
myStack.push(i)
print(myStack)
myStack.pop() # popping the top element
print(myStack)
myStack.peek() # printing the top element
myStack.isEmpty()
myStack.size()

View File

@ -0,0 +1,21 @@
from Stack import Stack
__author__ = 'Omkar Pathak'
def balanced_parentheses(parentheses):
""" Use a stack to check if a string of parentheses are balanced."""
stack = Stack(len(parentheses))
for parenthesis in parentheses:
if parenthesis == '(':
stack.push(parenthesis)
elif parenthesis == ')':
stack.pop()
return not stack.is_empty()
if __name__ == '__main__':
examples = ['((()))', '((())']
print('Balanced parentheses demonstration:\n')
for example in examples:
print(example + ': ' + str(balanced_parentheses(example)))

View File

@ -0,0 +1,62 @@
import string
from Stack import Stack
__author__ = 'Omkar Pathak'
def is_operand(char):
return char in string.ascii_letters or char in string.digits
def precedence(char):
""" Return integer value representing an operator's precedence, or
order of operation.
https://en.wikipedia.org/wiki/Order_of_operations
"""
dictionary = {'+': 1, '-': 1,
'*': 2, '/': 2,
'^': 3}
return dictionary.get(char, -1)
def infix_to_postfix(expression):
""" Convert infix notation to postfix notation using the Shunting-yard
algorithm.
https://en.wikipedia.org/wiki/Shunting-yard_algorithm
https://en.wikipedia.org/wiki/Infix_notation
https://en.wikipedia.org/wiki/Reverse_Polish_notation
"""
stack = Stack(len(expression))
postfix = []
for char in expression:
if is_operand(char):
postfix.append(char)
elif char not in {'(', ')'}:
while (not stack.is_empty()
and precedence(char) <= precedence(stack.peek())):
postfix.append(stack.pop())
stack.push(char)
elif char == '(':
stack.push(char)
elif char == ')':
while not stack.is_empty() and stack.peek() != '(':
postfix.append(stack.pop())
# Pop '(' from stack. If there is no '(', there is a mismatched
# parentheses.
if stack.peek() != '(':
raise ValueError('Mismatched parentheses')
stack.pop()
while not stack.is_empty():
postfix.append(stack.pop())
return ' '.join(postfix)
if __name__ == '__main__':
expression = 'a+b*(c^d-e)^(f+g*h)-i'
print('Infix to Postfix Notation demonstration:\n')
print('Infix notation: ' + expression)
print('Postfix notation: ' + infix_to_postfix(expression))

View File

@ -0,0 +1,16 @@
# Function to print element and NGE pair for all elements of list
def printNGE(arr):
for i in range(0, len(arr), 1):
next = -1
for j in range(i+1, len(arr), 1):
if arr[i] < arr[j]:
next = arr[j]
break
print(str(arr[i]) + " -- " + str(next))
# Driver program to test above function
arr = [11,13,21,3]
printNGE(arr)

View File

@ -0,0 +1,68 @@
__author__ = 'Omkar Pathak'
class Stack(object):
""" A stack is an abstract data type that serves as a collection of
elements with two principal operations: push() and pop(). push() adds an
element to the top of the stack, and pop() removes an element from the top
of a stack. The order in which elements come off of a stack are
Last In, First Out (LIFO).
https://en.wikipedia.org/wiki/Stack_(abstract_data_type)
"""
def __init__(self, limit=10):
self.stack = []
self.limit = limit
def __bool__(self):
return not bool(self.stack)
def __str__(self):
return str(self.stack)
def push(self, data):
""" Push an element to the top of the stack."""
if len(self.stack) >= self.limit:
raise StackOverflowError
self.stack.append(data)
def pop(self):
""" Pop an element off of the top of the stack."""
if self.stack:
return self.stack.pop()
else:
raise IndexError('pop from an empty stack')
def peek(self):
""" Peek at the top-most element of the stack."""
if self.stack:
return self.stack[-1]
def is_empty(self):
""" Check if a stack is empty."""
return not bool(self.stack)
def size(self):
""" Return the size of the stack."""
return len(self.stack)
class StackOverflowError(BaseException):
pass
if __name__ == '__main__':
stack = Stack()
for i in range(10):
stack.push(i)
print('Stack demonstration:\n')
print('Initial stack: ' + str(stack))
print('pop(): ' + str(stack.pop()))
print('After pop(), the stack is now: ' + str(stack))
print('peek(): ' + str(stack.peek()))
stack.push(100)
print('After push(100), the stack is now: ' + str(stack))
print('is_empty(): ' + str(stack.is_empty()))
print('size(): ' + str(stack.size()))

View File

@ -0,0 +1,40 @@
#############################
# Author: Aravind Kashyap
# File: lis.py
# comments: This programme outputs the Longest Strictly Increasing Subsequence in O(NLogN)
# Where N is the Number of elements in the list
#############################
def CeilIndex(v,l,r,key):
while r-l > 1:
m = (l + r)/2
if v[m] >= key:
r = m
else:
l = m
return r
def LongestIncreasingSubsequenceLength(v):
if(len(v) == 0):
return 0
tail = [0]*len(v)
length = 1
tail[0] = v[0]
for i in range(1,len(v)):
if v[i] < tail[0]:
tail[0] = v[i]
elif v[i] > tail[length-1]:
tail[length] = v[i]
length += 1
else:
tail[CeilIndex(tail,-1,length-1,v[i])] = v[i]
return length
v = [2, 5, 3, 7, 11, 8, 10, 13, 6]
print LongestIncreasingSubsequenceLength(v)

View File

@ -0,0 +1,34 @@
__author__ = "Tobias Carryer"
from time import time
class LinearCongruentialGenerator(object):
"""
A pseudorandom number generator.
"""
def __init__( self, multiplier, increment, modulo, seed=int(time()) ):
"""
These parameters are saved and used when nextNumber() is called.
modulo is the largest number that can be generated (exclusive). The most
efficent values are powers of 2. 2^32 is a common value.
"""
self.multiplier = multiplier
self.increment = increment
self.modulo = modulo
self.seed = seed
def next_number( self ):
"""
The smallest number that can be generated is zero.
The largest number that can be generated is modulo-1. modulo is set in the constructor.
"""
self.seed = (self.multiplier * self.seed + self.increment) % self.modulo
return self.seed
if __name__ == "__main__":
# Show the LCG in action.
lcg = LinearCongruentialGenerator(1664525, 1013904223, 2<<31)
while True :
print lcg.next_number()

View File

@ -0,0 +1,49 @@
"""
* Binary Exponentiation for Powers
* This is a method to find a^b in a time complexity of O(log b)
* This is one of the most commonly used methods of finding powers.
* Also useful in cases where solution to (a^b)%c is required,
* where a,b,c can be numbers over the computers calculation limits.
* Done using iteration, can also be done using recursion
* @author chinmoy159
* @version 1.0 dated 10/08/2017
"""
def b_expo(a, b):
res = 1
while b > 0:
if b&1:
res *= a
a *= a
b >>= 1
return res
def b_expo_mod(a, b, c):
res = 1
while b > 0:
if b&1:
res = ((res%c) * (a%c)) % c
a *= a
b >>= 1
return res
"""
* Wondering how this method works !
* It's pretty simple.
* Let's say you need to calculate a ^ b
* RULE 1 : a ^ b = (a*a) ^ (b/2) ---- example : 4 ^ 4 = (4*4) ^ (4/2) = 16 ^ 2
* RULE 2 : IF b is ODD, then ---- a ^ b = a * (a ^ (b - 1)) :: where (b - 1) is even.
* Once b is even, repeat the process to get a ^ b
* Repeat the process till b = 1 OR b = 0, because a^1 = a AND a^0 = 1
*
* As far as the modulo is concerned,
* the fact : (a*b) % c = ((a%c) * (b%c)) % c
* Now apply RULE 1 OR 2 whichever is required.
"""

View File

@ -0,0 +1,50 @@
"""
* Binary Exponentiation with Multiplication
* This is a method to find a*b in a time complexity of O(log b)
* This is one of the most commonly used methods of finding result of multiplication.
* Also useful in cases where solution to (a*b)%c is required,
* where a,b,c can be numbers over the computers calculation limits.
* Done using iteration, can also be done using recursion
* @author chinmoy159
* @version 1.0 dated 10/08/2017
"""
def b_expo(a, b):
res = 0
while b > 0:
if b&1:
res += a
a += a
b >>= 1
return res
def b_expo_mod(a, b, c):
res = 0
while b > 0:
if b&1:
res = ((res%c) + (a%c)) % c
a += a
b >>= 1
return res
"""
* Wondering how this method works !
* It's pretty simple.
* Let's say you need to calculate a ^ b
* RULE 1 : a * b = (a+a) * (b/2) ---- example : 4 * 4 = (4+4) * (4/2) = 8 * 2
* RULE 2 : IF b is ODD, then ---- a * b = a + (a * (b - 1)) :: where (b - 1) is even.
* Once b is even, repeat the process to get a * b
* Repeat the process till b = 1 OR b = 0, because a*1 = a AND a*0 = 0
*
* As far as the modulo is concerned,
* the fact : (a+b) % c = ((a%c) + (b%c)) % c
* Now apply RULE 1 OR 2, whichever is required.
"""

112
searches/ternary_search.py Normal file
View File

@ -0,0 +1,112 @@
'''
This is a type of divide and conquer algorithm which divides the search space into
3 parts and finds the target value based on the property of the array or list
(usually monotonic property).
Time Complexity : O(log3 N)
Space Complexity : O(1)
'''
import sys
# This is the precision for this function which can be altered.
# It is recommended for users to keep this number greater than or equal to 10.
precision = 10
# This is the linear search that will occur after the search space has become smaller.
def lin_search(left, right, A, target):
for i in range(left, right+1):
if(A[i] == target):
return i
# This is the iterative method of the ternary search algorithm.
def ite_ternary_search(A, target):
left = 0
right = len(A) - 1;
while(True):
if(left<right):
if(right-left < precision):
return lin_search(left,right,A,target)
oneThird = (left+right)/3+1;
twoThird = 2*(left+right)/3+1;
if(A[oneThird] == target):
return oneThird
elif(A[twoThird] == target):
return twoThird
elif(target < A[oneThird]):
right = oneThird-1
elif(A[twoThird] < target):
left = twoThird+1
else:
left = oneThird+1
right = twoThird-1
else:
return None
# This is the recursive method of the ternary search algorithm.
def rec_ternary_search(left, right, A, target):
if(left<right):
if(right-left < precision):
return lin_search(left,right,A,target)
oneThird = (left+right)/3+1;
twoThird = 2*(left+right)/3+1;
if(A[oneThird] == target):
return oneThird
elif(A[twoThird] == target):
return twoThird
elif(target < A[oneThird]):
return rec_ternary_search(left, oneThird-1, A, target)
elif(A[twoThird] < target):
return rec_ternary_search(twoThird+1, right, A, target)
else:
return rec_ternary_search(oneThird+1, twoThird-1, A, target)
else:
return None
# This function is to check if the array is sorted.
def __assert_sorted(collection):
if collection != sorted(collection):
raise ValueError('Collection must be sorted')
return True
if __name__ == '__main__':
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
# otherwise 2.x's input builtin function is too "smart"
if sys.version_info.major < 3:
input_function = raw_input
else:
input_function = input
user_input = input_function('Enter numbers separated by coma:\n')
collection = [int(item) for item in user_input.split(',')]
try:
__assert_sorted(collection)
except ValueError:
sys.exit('Sequence must be sorted to apply the ternary search')
target_input = input_function(
'Enter a single number to be found in the list:\n'
)
target = int(target_input)
result1 = ite_ternary_search(collection, target)
result2 = rec_ternary_search(0, len(collection)-1, collection, target)
if result2 is not None:
print('Iterative search: {} found at positions: {}'.format(target, result1))
print('Recursive search: {} found at positions: {}'.format(target, result2))
else:
print('Not found')