mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-24 05:21:09 +00:00
commit
44ad272ba4
|
@ -7,40 +7,42 @@ class Node:
|
|||
|
||||
def __init__(self, label):
|
||||
self.label = label
|
||||
self.left = None
|
||||
self.rigt = None
|
||||
self.parent = None
|
||||
self._parent = None
|
||||
self._left = None
|
||||
self._right = None
|
||||
self.height = 0
|
||||
|
||||
def getLabel(self):
|
||||
return self.label
|
||||
@property
|
||||
def right(self):
|
||||
return self._right
|
||||
|
||||
def setLabel(self, label):
|
||||
self.label = label
|
||||
@right.setter
|
||||
def right(self, node):
|
||||
if node is not None:
|
||||
node._parent = self
|
||||
self._right = node
|
||||
|
||||
def getLeft(self):
|
||||
return self.left
|
||||
@property
|
||||
def left(self):
|
||||
return self._left
|
||||
|
||||
def setLeft(self, left):
|
||||
self.left = left
|
||||
@left.setter
|
||||
def left(self, node):
|
||||
if node is not None:
|
||||
node._parent = self
|
||||
self._left = node
|
||||
|
||||
def getRight(self):
|
||||
return self.rigt
|
||||
@property
|
||||
def parent(self):
|
||||
return self._parent
|
||||
|
||||
def setRight(self, right):
|
||||
self.rigt = right
|
||||
|
||||
def getParent(self):
|
||||
return self.parent
|
||||
|
||||
def setParent(self, parent):
|
||||
self.parent = parent
|
||||
|
||||
def setHeight(self, height):
|
||||
self.height = height
|
||||
|
||||
def getHeight(self, height):
|
||||
return self.height
|
||||
@parent.setter
|
||||
def parent(self, node):
|
||||
if node is not None:
|
||||
self._parent = node
|
||||
self.height = self.parent.height + 1
|
||||
else:
|
||||
self.height = 0
|
||||
|
||||
|
||||
class AVL:
|
||||
|
@ -51,8 +53,10 @@ class AVL:
|
|||
|
||||
def insert(self, value):
|
||||
node = Node(value)
|
||||
|
||||
if self.root is None:
|
||||
self.root = node
|
||||
self.root.height = 0
|
||||
self.size = 1
|
||||
else:
|
||||
# Same as Binary Tree
|
||||
|
@ -64,63 +68,77 @@ class AVL:
|
|||
|
||||
dad_node = curr_node
|
||||
|
||||
if node.getLabel() < curr_node.getLabel():
|
||||
curr_node = curr_node.getLeft()
|
||||
if node.label < curr_node.label:
|
||||
curr_node = curr_node.left
|
||||
else:
|
||||
curr_node = curr_node.getRight()
|
||||
curr_node = curr_node.right
|
||||
else:
|
||||
if node.getLabel() < dad_node.getLabel():
|
||||
dad_node.setLeft(node)
|
||||
dad_node.setHeight(dad_node.getHeight() + 1)
|
||||
|
||||
if (dad_node.getRight().getHeight() -
|
||||
dad_node.getLeft.getHeight() > 1):
|
||||
self.rebalance(dad_node)
|
||||
|
||||
node.height = dad_node.height
|
||||
dad_node.height += 1
|
||||
if node.label < dad_node.label:
|
||||
dad_node.left = node
|
||||
else:
|
||||
dad_node.setRight(node)
|
||||
dad_node.setHeight(dad_node.getHeight() + 1)
|
||||
|
||||
if (dad_node.getRight().getHeight() -
|
||||
dad_node.getLeft.getHeight() > 1):
|
||||
self.rebalance(dad_node)
|
||||
dad_node.right = node
|
||||
self.rebalance(node)
|
||||
self.size += 1
|
||||
break
|
||||
|
||||
def rebalance(self, node):
|
||||
if (node.getRight().getHeight() -
|
||||
node.getLeft.getHeight() > 1):
|
||||
if (node.getRight().getHeight() >
|
||||
node.getLeft.getHeight()):
|
||||
pass
|
||||
n = node
|
||||
|
||||
while n is not None:
|
||||
height_right = n.height
|
||||
height_left = n.height
|
||||
|
||||
if n.right is not None:
|
||||
height_right = n.right.height
|
||||
|
||||
if n.left is not None:
|
||||
height_left = n.left.height
|
||||
|
||||
if abs(height_left - height_right) > 1:
|
||||
if height_left > height_right:
|
||||
left_child = n.left
|
||||
if left_child is not None:
|
||||
h_right = (right_child.right.height
|
||||
if (right_child.right is not None) else 0)
|
||||
h_left = (right_child.left.height
|
||||
if (right_child.left is not None) else 0)
|
||||
if (h_left > h_right):
|
||||
self.rotate_left(n)
|
||||
break
|
||||
else:
|
||||
pass
|
||||
pass
|
||||
elif (node.getRight().getHeight() -
|
||||
node.getLeft.getHeight() > 2):
|
||||
if (node.getRight().getHeight() >
|
||||
node.getLeft.getHeight()):
|
||||
pass
|
||||
self.double_rotate_right(n)
|
||||
break
|
||||
else:
|
||||
pass
|
||||
pass
|
||||
pass
|
||||
right_child = n.right
|
||||
if right_child is not None:
|
||||
h_right = (right_child.right.height
|
||||
if (right_child.right is not None) else 0)
|
||||
h_left = (right_child.left.height
|
||||
if (right_child.left is not None) else 0)
|
||||
if (h_left > h_right):
|
||||
self.double_rotate_left(n)
|
||||
break
|
||||
else:
|
||||
self.rotate_right(n)
|
||||
break
|
||||
n = n.parent
|
||||
|
||||
def rotate_left(self, node):
|
||||
# TODO: is this pythonic enought?
|
||||
aux = node.getLabel()
|
||||
node = aux.getRight()
|
||||
node.setHeight(node.getHeight() - 1)
|
||||
node.setLeft(Node(aux))
|
||||
node.getLeft().setHeight(node.getHeight() + 1)
|
||||
node.getRight().setHeight(node.getRight().getHeight() - 1)
|
||||
aux = node.parent.label
|
||||
node.parent.label = node.label
|
||||
node.parent.right = Node(aux)
|
||||
node.parent.right.height = node.parent.height + 1
|
||||
node.parent.left = node.right
|
||||
|
||||
|
||||
def rotate_right(self, node):
|
||||
aux = node.getLabel()
|
||||
node = aux.getLeft()
|
||||
node.setHeight(node.getHeight() - 1)
|
||||
node.setRight(Node(aux))
|
||||
node.getLeft().setHeight(node.getHeight() + 1)
|
||||
node.getLeft().setHeight(node.getLeft().getHeight() - 1)
|
||||
aux = node.parent.label
|
||||
node.parent.label = node.label
|
||||
node.parent.left = Node(aux)
|
||||
node.parent.left.height = node.parent.height + 1
|
||||
node.parent.right = node.right
|
||||
|
||||
def double_rotate_left(self, node):
|
||||
self.rotate_right(node.getRight().getRight())
|
||||
|
@ -129,3 +147,34 @@ class AVL:
|
|||
def double_rotate_right(self, node):
|
||||
self.rotate_left(node.getLeft().getLeft())
|
||||
self.rotate_right(node)
|
||||
|
||||
def empty(self):
|
||||
if self.root is None:
|
||||
return True
|
||||
return False
|
||||
|
||||
def preShow(self, curr_node):
|
||||
if curr_node is not None:
|
||||
self.preShow(curr_node.left)
|
||||
print(curr_node.label, end=" ")
|
||||
self.preShow(curr_node.right)
|
||||
|
||||
def preorder(self, curr_node):
|
||||
if curr_node is not None:
|
||||
self.preShow(curr_node.left)
|
||||
self.preShow(curr_node.right)
|
||||
print(curr_node.label, end=" ")
|
||||
|
||||
def getRoot(self):
|
||||
return self.root
|
||||
|
||||
t = AVL()
|
||||
t.insert(1)
|
||||
t.insert(2)
|
||||
t.insert(3)
|
||||
# t.preShow(t.root)
|
||||
# print("\n")
|
||||
# t.insert(4)
|
||||
# t.insert(5)
|
||||
# t.preShow(t.root)
|
||||
# t.preorden(t.root)
|
||||
|
|
|
@ -68,7 +68,7 @@ class BinarySearchTree:
|
|||
return False
|
||||
|
||||
def preShow(self, curr_node):
|
||||
if curr_node is None:
|
||||
if curr_node is not None:
|
||||
print(curr_node.getLabel(), end=" ")
|
||||
|
||||
self.preShow(curr_node.getLeft())
|
||||
|
|
|
@ -1,27 +0,0 @@
|
|||
# Author: OMKAR PATHAK
|
||||
|
||||
import Stack
|
||||
|
||||
def parseParenthesis(string):
|
||||
balanced = 1
|
||||
index = 0
|
||||
myStack = Stack.Stack(len(string))
|
||||
while (index < len(string)) and (balanced == 1):
|
||||
check = string[index]
|
||||
if check == '(':
|
||||
myStack.push(check)
|
||||
else:
|
||||
if myStack.isEmpty():
|
||||
balanced = 0
|
||||
else:
|
||||
myStack.pop()
|
||||
index += 1
|
||||
|
||||
if balanced == 1 and myStack.isEmpty():
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
if __name__ == '__main__':
|
||||
print(parseParenthesis('((()))')) # True
|
||||
print(parseParenthesis('((())')) # False
|
|
@ -1,48 +0,0 @@
|
|||
# Author: OMKAR PATHAK
|
||||
|
||||
import Stack
|
||||
|
||||
def isOperand(char):
|
||||
return (ord(char) >= ord('a') and ord(char) <= ord('z')) or (ord(char) >= ord('A') and ord(char) <= ord('Z'))
|
||||
|
||||
def precedence(char):
|
||||
if char == '+' or char == '-':
|
||||
return 1
|
||||
elif char == '*' or char == '/':
|
||||
return 2
|
||||
elif char == '^':
|
||||
return 3
|
||||
else:
|
||||
return -1
|
||||
|
||||
def infixToPostfix(myExp, myStack):
|
||||
postFix = []
|
||||
for i in range(len(myExp)):
|
||||
if (isOperand(myExp[i])):
|
||||
postFix.append(myExp[i])
|
||||
elif(myExp[i] == '('):
|
||||
myStack.push(myExp[i])
|
||||
elif(myExp[i] == ')'):
|
||||
topOperator = myStack.pop()
|
||||
while(not myStack.isEmpty() and topOperator != '('):
|
||||
postFix.append(topOperator)
|
||||
topOperator = myStack.pop()
|
||||
else:
|
||||
while (not myStack.isEmpty()) and (precedence(myExp[i]) <= precedence(myStack.peek())):
|
||||
postFix.append(myStack.pop())
|
||||
myStack.push(myExp[i])
|
||||
|
||||
while(not myStack.isEmpty()):
|
||||
postFix.append(myStack.pop())
|
||||
return ' '.join(postFix)
|
||||
|
||||
if __name__ == '__main__':
|
||||
myExp = 'a+b*(c^d-e)^(f+g*h)-i'
|
||||
myExp = [i for i in myExp]
|
||||
print('Infix:',' '.join(myExp))
|
||||
myStack = Stack.Stack(len(myExp))
|
||||
print('Postfix:',infixToPostfix(myExp, myStack))
|
||||
|
||||
# OUTPUT:
|
||||
# Infix: a + b * ( c ^ d - e ) ^ ( f + g * h ) - i
|
||||
# Postfix: a b c d ^ e - f g h * + ^ * + i -
|
|
@ -1,50 +0,0 @@
|
|||
# Author: OMKAR PATHAK
|
||||
|
||||
class Stack(object):
|
||||
def __init__(self, limit = 10):
|
||||
self.stack = []
|
||||
self.limit = limit
|
||||
|
||||
# for printing the stack contents
|
||||
def __str__(self):
|
||||
return ' '.join([str(i) for i in self.stack])
|
||||
|
||||
# for pushing an element on to the stack
|
||||
def push(self, data):
|
||||
if len(self.stack) >= self.limit:
|
||||
print('Stack Overflow')
|
||||
else:
|
||||
self.stack.append(data)
|
||||
|
||||
# for popping the uppermost element
|
||||
def pop(self):
|
||||
if len(self.stack) <= 0:
|
||||
return -1
|
||||
else:
|
||||
return self.stack.pop()
|
||||
|
||||
# for peeking the top-most element of the stack
|
||||
def peek(self):
|
||||
if len(self.stack) <= 0:
|
||||
return -1
|
||||
else:
|
||||
return self.stack[len(self.stack) - 1]
|
||||
|
||||
# to check if stack is empty
|
||||
def isEmpty(self):
|
||||
return self.stack == []
|
||||
|
||||
# for checking the size of stack
|
||||
def size(self):
|
||||
return len(self.stack)
|
||||
|
||||
if __name__ == '__main__':
|
||||
myStack = Stack()
|
||||
for i in range(10):
|
||||
myStack.push(i)
|
||||
print(myStack)
|
||||
myStack.pop() # popping the top element
|
||||
print(myStack)
|
||||
myStack.peek() # printing the top element
|
||||
myStack.isEmpty()
|
||||
myStack.size()
|
21
data_structures/Stacks/balanced_parentheses.py
Normal file
21
data_structures/Stacks/balanced_parentheses.py
Normal file
|
@ -0,0 +1,21 @@
|
|||
from Stack import Stack
|
||||
|
||||
__author__ = 'Omkar Pathak'
|
||||
|
||||
|
||||
def balanced_parentheses(parentheses):
|
||||
""" Use a stack to check if a string of parentheses are balanced."""
|
||||
stack = Stack(len(parentheses))
|
||||
for parenthesis in parentheses:
|
||||
if parenthesis == '(':
|
||||
stack.push(parenthesis)
|
||||
elif parenthesis == ')':
|
||||
stack.pop()
|
||||
return not stack.is_empty()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
examples = ['((()))', '((())']
|
||||
print('Balanced parentheses demonstration:\n')
|
||||
for example in examples:
|
||||
print(example + ': ' + str(balanced_parentheses(example)))
|
62
data_structures/Stacks/infix_to_postfix_conversion.py
Normal file
62
data_structures/Stacks/infix_to_postfix_conversion.py
Normal file
|
@ -0,0 +1,62 @@
|
|||
import string
|
||||
|
||||
from Stack import Stack
|
||||
|
||||
__author__ = 'Omkar Pathak'
|
||||
|
||||
|
||||
def is_operand(char):
|
||||
return char in string.ascii_letters or char in string.digits
|
||||
|
||||
|
||||
def precedence(char):
|
||||
""" Return integer value representing an operator's precedence, or
|
||||
order of operation.
|
||||
|
||||
https://en.wikipedia.org/wiki/Order_of_operations
|
||||
"""
|
||||
dictionary = {'+': 1, '-': 1,
|
||||
'*': 2, '/': 2,
|
||||
'^': 3}
|
||||
return dictionary.get(char, -1)
|
||||
|
||||
|
||||
def infix_to_postfix(expression):
|
||||
""" Convert infix notation to postfix notation using the Shunting-yard
|
||||
algorithm.
|
||||
|
||||
https://en.wikipedia.org/wiki/Shunting-yard_algorithm
|
||||
https://en.wikipedia.org/wiki/Infix_notation
|
||||
https://en.wikipedia.org/wiki/Reverse_Polish_notation
|
||||
"""
|
||||
stack = Stack(len(expression))
|
||||
postfix = []
|
||||
for char in expression:
|
||||
if is_operand(char):
|
||||
postfix.append(char)
|
||||
elif char not in {'(', ')'}:
|
||||
while (not stack.is_empty()
|
||||
and precedence(char) <= precedence(stack.peek())):
|
||||
postfix.append(stack.pop())
|
||||
stack.push(char)
|
||||
elif char == '(':
|
||||
stack.push(char)
|
||||
elif char == ')':
|
||||
while not stack.is_empty() and stack.peek() != '(':
|
||||
postfix.append(stack.pop())
|
||||
# Pop '(' from stack. If there is no '(', there is a mismatched
|
||||
# parentheses.
|
||||
if stack.peek() != '(':
|
||||
raise ValueError('Mismatched parentheses')
|
||||
stack.pop()
|
||||
while not stack.is_empty():
|
||||
postfix.append(stack.pop())
|
||||
return ' '.join(postfix)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
expression = 'a+b*(c^d-e)^(f+g*h)-i'
|
||||
|
||||
print('Infix to Postfix Notation demonstration:\n')
|
||||
print('Infix notation: ' + expression)
|
||||
print('Postfix notation: ' + infix_to_postfix(expression))
|
16
data_structures/Stacks/next.py
Normal file
16
data_structures/Stacks/next.py
Normal file
|
@ -0,0 +1,16 @@
|
|||
# Function to print element and NGE pair for all elements of list
|
||||
def printNGE(arr):
|
||||
|
||||
for i in range(0, len(arr), 1):
|
||||
|
||||
next = -1
|
||||
for j in range(i+1, len(arr), 1):
|
||||
if arr[i] < arr[j]:
|
||||
next = arr[j]
|
||||
break
|
||||
|
||||
print(str(arr[i]) + " -- " + str(next))
|
||||
|
||||
# Driver program to test above function
|
||||
arr = [11,13,21,3]
|
||||
printNGE(arr)
|
68
data_structures/Stacks/stack.py
Normal file
68
data_structures/Stacks/stack.py
Normal file
|
@ -0,0 +1,68 @@
|
|||
__author__ = 'Omkar Pathak'
|
||||
|
||||
|
||||
class Stack(object):
|
||||
""" A stack is an abstract data type that serves as a collection of
|
||||
elements with two principal operations: push() and pop(). push() adds an
|
||||
element to the top of the stack, and pop() removes an element from the top
|
||||
of a stack. The order in which elements come off of a stack are
|
||||
Last In, First Out (LIFO).
|
||||
|
||||
https://en.wikipedia.org/wiki/Stack_(abstract_data_type)
|
||||
"""
|
||||
|
||||
def __init__(self, limit=10):
|
||||
self.stack = []
|
||||
self.limit = limit
|
||||
|
||||
def __bool__(self):
|
||||
return not bool(self.stack)
|
||||
|
||||
def __str__(self):
|
||||
return str(self.stack)
|
||||
|
||||
def push(self, data):
|
||||
""" Push an element to the top of the stack."""
|
||||
if len(self.stack) >= self.limit:
|
||||
raise StackOverflowError
|
||||
self.stack.append(data)
|
||||
|
||||
def pop(self):
|
||||
""" Pop an element off of the top of the stack."""
|
||||
if self.stack:
|
||||
return self.stack.pop()
|
||||
else:
|
||||
raise IndexError('pop from an empty stack')
|
||||
|
||||
def peek(self):
|
||||
""" Peek at the top-most element of the stack."""
|
||||
if self.stack:
|
||||
return self.stack[-1]
|
||||
|
||||
def is_empty(self):
|
||||
""" Check if a stack is empty."""
|
||||
return not bool(self.stack)
|
||||
|
||||
def size(self):
|
||||
""" Return the size of the stack."""
|
||||
return len(self.stack)
|
||||
|
||||
|
||||
class StackOverflowError(BaseException):
|
||||
pass
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
stack = Stack()
|
||||
for i in range(10):
|
||||
stack.push(i)
|
||||
|
||||
print('Stack demonstration:\n')
|
||||
print('Initial stack: ' + str(stack))
|
||||
print('pop(): ' + str(stack.pop()))
|
||||
print('After pop(), the stack is now: ' + str(stack))
|
||||
print('peek(): ' + str(stack.peek()))
|
||||
stack.push(100)
|
||||
print('After push(100), the stack is now: ' + str(stack))
|
||||
print('is_empty(): ' + str(stack.is_empty()))
|
||||
print('size(): ' + str(stack.size()))
|
|
@ -0,0 +1,40 @@
|
|||
#############################
|
||||
# Author: Aravind Kashyap
|
||||
# File: lis.py
|
||||
# comments: This programme outputs the Longest Strictly Increasing Subsequence in O(NLogN)
|
||||
# Where N is the Number of elements in the list
|
||||
#############################
|
||||
def CeilIndex(v,l,r,key):
|
||||
while r-l > 1:
|
||||
m = (l + r)/2
|
||||
if v[m] >= key:
|
||||
r = m
|
||||
else:
|
||||
l = m
|
||||
|
||||
return r
|
||||
|
||||
|
||||
def LongestIncreasingSubsequenceLength(v):
|
||||
if(len(v) == 0):
|
||||
return 0
|
||||
|
||||
tail = [0]*len(v)
|
||||
length = 1
|
||||
|
||||
tail[0] = v[0]
|
||||
|
||||
for i in range(1,len(v)):
|
||||
if v[i] < tail[0]:
|
||||
tail[0] = v[i]
|
||||
elif v[i] > tail[length-1]:
|
||||
tail[length] = v[i]
|
||||
length += 1
|
||||
else:
|
||||
tail[CeilIndex(tail,-1,length-1,v[i])] = v[i]
|
||||
|
||||
return length
|
||||
|
||||
|
||||
v = [2, 5, 3, 7, 11, 8, 10, 13, 6]
|
||||
print LongestIncreasingSubsequenceLength(v)
|
34
other/LinearCongruentialGenerator.py
Normal file
34
other/LinearCongruentialGenerator.py
Normal file
|
@ -0,0 +1,34 @@
|
|||
__author__ = "Tobias Carryer"
|
||||
|
||||
from time import time
|
||||
|
||||
class LinearCongruentialGenerator(object):
|
||||
"""
|
||||
A pseudorandom number generator.
|
||||
"""
|
||||
|
||||
def __init__( self, multiplier, increment, modulo, seed=int(time()) ):
|
||||
"""
|
||||
These parameters are saved and used when nextNumber() is called.
|
||||
|
||||
modulo is the largest number that can be generated (exclusive). The most
|
||||
efficent values are powers of 2. 2^32 is a common value.
|
||||
"""
|
||||
self.multiplier = multiplier
|
||||
self.increment = increment
|
||||
self.modulo = modulo
|
||||
self.seed = seed
|
||||
|
||||
def next_number( self ):
|
||||
"""
|
||||
The smallest number that can be generated is zero.
|
||||
The largest number that can be generated is modulo-1. modulo is set in the constructor.
|
||||
"""
|
||||
self.seed = (self.multiplier * self.seed + self.increment) % self.modulo
|
||||
return self.seed
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Show the LCG in action.
|
||||
lcg = LinearCongruentialGenerator(1664525, 1013904223, 2<<31)
|
||||
while True :
|
||||
print lcg.next_number()
|
49
other/binary_exponentiation.py
Normal file
49
other/binary_exponentiation.py
Normal file
|
@ -0,0 +1,49 @@
|
|||
"""
|
||||
* Binary Exponentiation for Powers
|
||||
* This is a method to find a^b in a time complexity of O(log b)
|
||||
* This is one of the most commonly used methods of finding powers.
|
||||
* Also useful in cases where solution to (a^b)%c is required,
|
||||
* where a,b,c can be numbers over the computers calculation limits.
|
||||
* Done using iteration, can also be done using recursion
|
||||
|
||||
* @author chinmoy159
|
||||
* @version 1.0 dated 10/08/2017
|
||||
"""
|
||||
|
||||
|
||||
def b_expo(a, b):
|
||||
res = 1
|
||||
while b > 0:
|
||||
if b&1:
|
||||
res *= a
|
||||
|
||||
a *= a
|
||||
b >>= 1
|
||||
|
||||
return res
|
||||
|
||||
|
||||
def b_expo_mod(a, b, c):
|
||||
res = 1
|
||||
while b > 0:
|
||||
if b&1:
|
||||
res = ((res%c) * (a%c)) % c
|
||||
|
||||
a *= a
|
||||
b >>= 1
|
||||
|
||||
return res
|
||||
|
||||
"""
|
||||
* Wondering how this method works !
|
||||
* It's pretty simple.
|
||||
* Let's say you need to calculate a ^ b
|
||||
* RULE 1 : a ^ b = (a*a) ^ (b/2) ---- example : 4 ^ 4 = (4*4) ^ (4/2) = 16 ^ 2
|
||||
* RULE 2 : IF b is ODD, then ---- a ^ b = a * (a ^ (b - 1)) :: where (b - 1) is even.
|
||||
* Once b is even, repeat the process to get a ^ b
|
||||
* Repeat the process till b = 1 OR b = 0, because a^1 = a AND a^0 = 1
|
||||
*
|
||||
* As far as the modulo is concerned,
|
||||
* the fact : (a*b) % c = ((a%c) * (b%c)) % c
|
||||
* Now apply RULE 1 OR 2 whichever is required.
|
||||
"""
|
50
other/binary_exponentiation_2.py
Normal file
50
other/binary_exponentiation_2.py
Normal file
|
@ -0,0 +1,50 @@
|
|||
"""
|
||||
* Binary Exponentiation with Multiplication
|
||||
* This is a method to find a*b in a time complexity of O(log b)
|
||||
* This is one of the most commonly used methods of finding result of multiplication.
|
||||
* Also useful in cases where solution to (a*b)%c is required,
|
||||
* where a,b,c can be numbers over the computers calculation limits.
|
||||
* Done using iteration, can also be done using recursion
|
||||
|
||||
* @author chinmoy159
|
||||
* @version 1.0 dated 10/08/2017
|
||||
"""
|
||||
|
||||
|
||||
def b_expo(a, b):
|
||||
res = 0
|
||||
while b > 0:
|
||||
if b&1:
|
||||
res += a
|
||||
|
||||
a += a
|
||||
b >>= 1
|
||||
|
||||
return res
|
||||
|
||||
|
||||
def b_expo_mod(a, b, c):
|
||||
res = 0
|
||||
while b > 0:
|
||||
if b&1:
|
||||
res = ((res%c) + (a%c)) % c
|
||||
|
||||
a += a
|
||||
b >>= 1
|
||||
|
||||
return res
|
||||
|
||||
|
||||
"""
|
||||
* Wondering how this method works !
|
||||
* It's pretty simple.
|
||||
* Let's say you need to calculate a ^ b
|
||||
* RULE 1 : a * b = (a+a) * (b/2) ---- example : 4 * 4 = (4+4) * (4/2) = 8 * 2
|
||||
* RULE 2 : IF b is ODD, then ---- a * b = a + (a * (b - 1)) :: where (b - 1) is even.
|
||||
* Once b is even, repeat the process to get a * b
|
||||
* Repeat the process till b = 1 OR b = 0, because a*1 = a AND a*0 = 0
|
||||
*
|
||||
* As far as the modulo is concerned,
|
||||
* the fact : (a+b) % c = ((a%c) + (b%c)) % c
|
||||
* Now apply RULE 1 OR 2, whichever is required.
|
||||
"""
|
112
searches/ternary_search.py
Normal file
112
searches/ternary_search.py
Normal file
|
@ -0,0 +1,112 @@
|
|||
'''
|
||||
This is a type of divide and conquer algorithm which divides the search space into
|
||||
3 parts and finds the target value based on the property of the array or list
|
||||
(usually monotonic property).
|
||||
|
||||
Time Complexity : O(log3 N)
|
||||
Space Complexity : O(1)
|
||||
'''
|
||||
|
||||
import sys
|
||||
|
||||
# This is the precision for this function which can be altered.
|
||||
# It is recommended for users to keep this number greater than or equal to 10.
|
||||
precision = 10
|
||||
|
||||
# This is the linear search that will occur after the search space has become smaller.
|
||||
def lin_search(left, right, A, target):
|
||||
for i in range(left, right+1):
|
||||
if(A[i] == target):
|
||||
return i
|
||||
|
||||
# This is the iterative method of the ternary search algorithm.
|
||||
def ite_ternary_search(A, target):
|
||||
left = 0
|
||||
right = len(A) - 1;
|
||||
while(True):
|
||||
if(left<right):
|
||||
|
||||
if(right-left < precision):
|
||||
return lin_search(left,right,A,target)
|
||||
|
||||
oneThird = (left+right)/3+1;
|
||||
twoThird = 2*(left+right)/3+1;
|
||||
|
||||
if(A[oneThird] == target):
|
||||
return oneThird
|
||||
elif(A[twoThird] == target):
|
||||
return twoThird
|
||||
|
||||
elif(target < A[oneThird]):
|
||||
right = oneThird-1
|
||||
elif(A[twoThird] < target):
|
||||
left = twoThird+1
|
||||
|
||||
else:
|
||||
left = oneThird+1
|
||||
right = twoThird-1
|
||||
else:
|
||||
return None
|
||||
|
||||
# This is the recursive method of the ternary search algorithm.
|
||||
def rec_ternary_search(left, right, A, target):
|
||||
if(left<right):
|
||||
|
||||
if(right-left < precision):
|
||||
return lin_search(left,right,A,target)
|
||||
|
||||
oneThird = (left+right)/3+1;
|
||||
twoThird = 2*(left+right)/3+1;
|
||||
|
||||
if(A[oneThird] == target):
|
||||
return oneThird
|
||||
elif(A[twoThird] == target):
|
||||
return twoThird
|
||||
|
||||
elif(target < A[oneThird]):
|
||||
return rec_ternary_search(left, oneThird-1, A, target)
|
||||
elif(A[twoThird] < target):
|
||||
return rec_ternary_search(twoThird+1, right, A, target)
|
||||
|
||||
else:
|
||||
return rec_ternary_search(oneThird+1, twoThird-1, A, target)
|
||||
else:
|
||||
return None
|
||||
|
||||
# This function is to check if the array is sorted.
|
||||
def __assert_sorted(collection):
|
||||
if collection != sorted(collection):
|
||||
raise ValueError('Collection must be sorted')
|
||||
return True
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
|
||||
# otherwise 2.x's input builtin function is too "smart"
|
||||
|
||||
if sys.version_info.major < 3:
|
||||
input_function = raw_input
|
||||
else:
|
||||
input_function = input
|
||||
|
||||
user_input = input_function('Enter numbers separated by coma:\n')
|
||||
collection = [int(item) for item in user_input.split(',')]
|
||||
|
||||
try:
|
||||
__assert_sorted(collection)
|
||||
except ValueError:
|
||||
sys.exit('Sequence must be sorted to apply the ternary search')
|
||||
|
||||
target_input = input_function(
|
||||
'Enter a single number to be found in the list:\n'
|
||||
)
|
||||
target = int(target_input)
|
||||
result1 = ite_ternary_search(collection, target)
|
||||
result2 = rec_ternary_search(0, len(collection)-1, collection, target)
|
||||
|
||||
if result2 is not None:
|
||||
print('Iterative search: {} found at positions: {}'.format(target, result1))
|
||||
print('Recursive search: {} found at positions: {}'.format(target, result2))
|
||||
else:
|
||||
print('Not found')
|
Loading…
Reference in New Issue
Block a user