mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 16:27:02 +00:00
New Code!!(Finding the N Possible Binary Search Tree and Binary Tree from Given N node Number) (#1663)
* Code Upload * Code Upload * Delete n_possible_bst * Find the N Possible Binary Tree and Binary Tree from given Nth Number of Node. * Update in Test * Update and rename n_possible_bst.py to number_of_possible_binary_trees.py Co-authored-by: Christian Clauss <cclauss@me.com>
This commit is contained in:
parent
51b769095f
commit
46df735cf4
102
data_structures/binary_tree/number_of_possible_binary_trees.py
Normal file
102
data_structures/binary_tree/number_of_possible_binary_trees.py
Normal file
|
@ -0,0 +1,102 @@
|
|||
"""
|
||||
Hey, we are going to find an exciting number called Catalan number which is use to find
|
||||
the number of possible binary search trees from tree of a given number of nodes.
|
||||
|
||||
We will use the formula: t(n) = SUMMATION(i = 1 to n)t(i-1)t(n-i)
|
||||
|
||||
Further details at Wikipedia: https://en.wikipedia.org/wiki/Catalan_number
|
||||
"""
|
||||
"""
|
||||
Our Contribution:
|
||||
Basically we Create the 2 function:
|
||||
1. catalan_number(node_count: int) -> int
|
||||
Returns the number of possible binary search trees for n nodes.
|
||||
2. binary_tree_count(node_count: int) -> int
|
||||
Returns the number of possible binary trees for n nodes.
|
||||
"""
|
||||
|
||||
|
||||
def binomial_coefficient(n: int, k: int) -> int:
|
||||
"""
|
||||
Since Here we Find the Binomial Coefficient:
|
||||
https://en.wikipedia.org/wiki/Binomial_coefficient
|
||||
C(n,k) = n! / k!(n-k)!
|
||||
:param n: 2 times of Number of nodes
|
||||
:param k: Number of nodes
|
||||
:return: Integer Value
|
||||
|
||||
>>> binomial_coefficient(4, 2)
|
||||
6
|
||||
"""
|
||||
result = 1 # To kept the Calculated Value
|
||||
# Since C(n, k) = C(n, n-k)
|
||||
if k > (n - k):
|
||||
k = n - k
|
||||
# Calculate C(n,k)
|
||||
for i in range(k):
|
||||
result *= n - i
|
||||
result //= i + 1
|
||||
return result
|
||||
|
||||
|
||||
def catalan_number(node_count: int) -> int:
|
||||
"""
|
||||
We can find Catalan number many ways but here we use Binomial Coefficent because it
|
||||
does the job in O(n)
|
||||
|
||||
return the Catalan number of n using 2nCn/(n+1).
|
||||
:param n: number of nodes
|
||||
:return: Catalan number of n nodes
|
||||
|
||||
>>> catalan_number(5)
|
||||
42
|
||||
>>> catalan_number(6)
|
||||
132
|
||||
"""
|
||||
return binomial_coefficient(2 * node_count, node_count) // (node_count + 1)
|
||||
|
||||
|
||||
def factorial(n: int) -> int:
|
||||
"""
|
||||
Return the factorial of a number.
|
||||
:param n: Number to find the Factorial of.
|
||||
:return: Factorial of n.
|
||||
|
||||
>>> import math
|
||||
>>> all(factorial(i) == math.factorial(i) for i in range(10))
|
||||
True
|
||||
>>> factorial(-5) # doctest: +ELLIPSIS
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: factorial() not defined for negative values
|
||||
"""
|
||||
if n < 0:
|
||||
raise ValueError("factorial() not defined for negative values")
|
||||
result = 1
|
||||
for i in range(1, n + 1):
|
||||
result *= i
|
||||
return result
|
||||
|
||||
|
||||
def binary_tree_count(node_count: int) -> int:
|
||||
"""
|
||||
Return the number of possible of binary trees.
|
||||
:param n: number of nodes
|
||||
:return: Number of possilble binary trees
|
||||
|
||||
>>> binary_tree_count(5)
|
||||
5040
|
||||
>>> binary_tree_count(6)
|
||||
95040
|
||||
"""
|
||||
return catalan_number(node_count) * factorial(node_count)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
node_count = int(input("Enter the number of nodes: ").strip() or 0)
|
||||
if node_count <= 0:
|
||||
raise ValueError("We need some nodes to work with.")
|
||||
print(
|
||||
f"Given {node_count} nodes, there are {binary_tree_count(node_count)} "
|
||||
f"binary trees and {catalan_number(node_count)} binary search trees."
|
||||
)
|
Loading…
Reference in New Issue
Block a user