mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-27 15:01:08 +00:00
Add: FP Growth Algorithm (#10746)
* Add: FP Growth Algorithm
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* changes names
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Revert "changes names"
This reverts commit c0470094d0
.
* refactore code
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Update frequent_pattern_growth.py
---------
Co-authored-by: Jeel Gajera <jeelgajera00@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Christian Clauss <cclauss@me.com>
This commit is contained in:
parent
5645084dcd
commit
47c19d9b2d
|
@ -541,6 +541,7 @@
|
||||||
* [Dimensionality Reduction](machine_learning/dimensionality_reduction.py)
|
* [Dimensionality Reduction](machine_learning/dimensionality_reduction.py)
|
||||||
* Forecasting
|
* Forecasting
|
||||||
* [Run](machine_learning/forecasting/run.py)
|
* [Run](machine_learning/forecasting/run.py)
|
||||||
|
* [Frequent Pattern Growth Algorithm](machine_learning/frequent_pattern_growth.py)
|
||||||
* [Gradient Descent](machine_learning/gradient_descent.py)
|
* [Gradient Descent](machine_learning/gradient_descent.py)
|
||||||
* [K Means Clust](machine_learning/k_means_clust.py)
|
* [K Means Clust](machine_learning/k_means_clust.py)
|
||||||
* [K Nearest Neighbours](machine_learning/k_nearest_neighbours.py)
|
* [K Nearest Neighbours](machine_learning/k_nearest_neighbours.py)
|
||||||
|
|
349
machine_learning/frequent_pattern_growth.py
Normal file
349
machine_learning/frequent_pattern_growth.py
Normal file
|
@ -0,0 +1,349 @@
|
||||||
|
"""
|
||||||
|
The Frequent Pattern Growth algorithm (FP-Growth) is a widely used data mining
|
||||||
|
technique for discovering frequent itemsets in large transaction databases.
|
||||||
|
|
||||||
|
It overcomes some of the limitations of traditional methods such as Apriori by
|
||||||
|
efficiently constructing the FP-Tree
|
||||||
|
|
||||||
|
WIKI: https://athena.ecs.csus.edu/~mei/associationcw/FpGrowth.html
|
||||||
|
|
||||||
|
Examples: https://www.javatpoint.com/fp-growth-algorithm-in-data-mining
|
||||||
|
"""
|
||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
|
from dataclasses import dataclass, field
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class TreeNode:
|
||||||
|
"""
|
||||||
|
A node in a Frequent Pattern tree.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
name: The name of this node.
|
||||||
|
num_occur: The number of occurrences of the node.
|
||||||
|
parent_node: The parent node.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
>>> parent = TreeNode("Parent", 1, None)
|
||||||
|
>>> child = TreeNode("Child", 2, parent)
|
||||||
|
>>> child.name
|
||||||
|
'Child'
|
||||||
|
>>> child.count
|
||||||
|
2
|
||||||
|
"""
|
||||||
|
|
||||||
|
name: str
|
||||||
|
count: int
|
||||||
|
parent: TreeNode | None = None
|
||||||
|
children: dict[str, TreeNode] = field(default_factory=dict)
|
||||||
|
node_link: TreeNode | None = None
|
||||||
|
|
||||||
|
def __repr__(self) -> str:
|
||||||
|
return f"TreeNode({self.name!r}, {self.count!r}, {self.parent!r})"
|
||||||
|
|
||||||
|
def inc(self, num_occur: int) -> None:
|
||||||
|
self.count += num_occur
|
||||||
|
|
||||||
|
def disp(self, ind: int = 1) -> None:
|
||||||
|
print(f"{' ' * ind} {self.name} {self.count}")
|
||||||
|
for child in self.children.values():
|
||||||
|
child.disp(ind + 1)
|
||||||
|
|
||||||
|
|
||||||
|
def create_tree(data_set: list, min_sup: int = 1) -> tuple[TreeNode, dict]:
|
||||||
|
"""
|
||||||
|
Create Frequent Pattern tree
|
||||||
|
|
||||||
|
Args:
|
||||||
|
data_set: A list of transactions, where each transaction is a list of items.
|
||||||
|
min_sup: The minimum support threshold.
|
||||||
|
Items with support less than this will be pruned. Default is 1.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
The root of the FP-Tree.
|
||||||
|
header_table: The header table dictionary with item information.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
>>> data_set = [
|
||||||
|
... ['A', 'B', 'C'],
|
||||||
|
... ['A', 'C'],
|
||||||
|
... ['A', 'B', 'E'],
|
||||||
|
... ['A', 'B', 'C', 'E'],
|
||||||
|
... ['B', 'E']
|
||||||
|
... ]
|
||||||
|
>>> min_sup = 2
|
||||||
|
>>> fp_tree, header_table = create_tree(data_set, min_sup)
|
||||||
|
>>> fp_tree
|
||||||
|
TreeNode('Null Set', 1, None)
|
||||||
|
>>> len(header_table)
|
||||||
|
4
|
||||||
|
>>> header_table["A"]
|
||||||
|
[[4, None], TreeNode('A', 4, TreeNode('Null Set', 1, None))]
|
||||||
|
>>> header_table["E"][1] # doctest: +NORMALIZE_WHITESPACE
|
||||||
|
TreeNode('E', 1, TreeNode('B', 3, TreeNode('A', 4, TreeNode('Null Set', 1, None))))
|
||||||
|
>>> sorted(header_table)
|
||||||
|
['A', 'B', 'C', 'E']
|
||||||
|
>>> fp_tree.name
|
||||||
|
'Null Set'
|
||||||
|
>>> sorted(fp_tree.children)
|
||||||
|
['A', 'B']
|
||||||
|
>>> fp_tree.children['A'].name
|
||||||
|
'A'
|
||||||
|
>>> sorted(fp_tree.children['A'].children)
|
||||||
|
['B', 'C']
|
||||||
|
"""
|
||||||
|
header_table: dict = {}
|
||||||
|
for trans in data_set:
|
||||||
|
for item in trans:
|
||||||
|
header_table[item] = header_table.get(item, [0, None])
|
||||||
|
header_table[item][0] += 1
|
||||||
|
|
||||||
|
for k in list(header_table):
|
||||||
|
if header_table[k][0] < min_sup:
|
||||||
|
del header_table[k]
|
||||||
|
|
||||||
|
if not (freq_item_set := set(header_table)):
|
||||||
|
return TreeNode("Null Set", 1, None), {}
|
||||||
|
|
||||||
|
for k in header_table:
|
||||||
|
header_table[k] = [header_table[k], None]
|
||||||
|
|
||||||
|
fp_tree = TreeNode("Null Set", 1, None) # Parent is None for the root node
|
||||||
|
for tran_set in data_set:
|
||||||
|
local_d = {
|
||||||
|
item: header_table[item][0] for item in tran_set if item in freq_item_set
|
||||||
|
}
|
||||||
|
if local_d:
|
||||||
|
sorted_items = sorted(
|
||||||
|
local_d.items(), key=lambda item_info: item_info[1], reverse=True
|
||||||
|
)
|
||||||
|
ordered_items = [item[0] for item in sorted_items]
|
||||||
|
update_tree(ordered_items, fp_tree, header_table, 1)
|
||||||
|
|
||||||
|
return fp_tree, header_table
|
||||||
|
|
||||||
|
|
||||||
|
def update_tree(items: list, in_tree: TreeNode, header_table: dict, count: int) -> None:
|
||||||
|
"""
|
||||||
|
Update the FP-Tree with a transaction.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
items: List of items in the transaction.
|
||||||
|
in_tree: The current node in the FP-Tree.
|
||||||
|
header_table: The header table dictionary with item information.
|
||||||
|
count: The count of the transaction.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
>>> data_set = [
|
||||||
|
... ['A', 'B', 'C'],
|
||||||
|
... ['A', 'C'],
|
||||||
|
... ['A', 'B', 'E'],
|
||||||
|
... ['A', 'B', 'C', 'E'],
|
||||||
|
... ['B', 'E']
|
||||||
|
... ]
|
||||||
|
>>> min_sup = 2
|
||||||
|
>>> fp_tree, header_table = create_tree(data_set, min_sup)
|
||||||
|
>>> fp_tree
|
||||||
|
TreeNode('Null Set', 1, None)
|
||||||
|
>>> transaction = ['A', 'B', 'E']
|
||||||
|
>>> update_tree(transaction, fp_tree, header_table, 1)
|
||||||
|
>>> fp_tree
|
||||||
|
TreeNode('Null Set', 1, None)
|
||||||
|
>>> fp_tree.children['A'].children['B'].children['E'].children
|
||||||
|
{}
|
||||||
|
>>> fp_tree.children['A'].children['B'].children['E'].count
|
||||||
|
2
|
||||||
|
>>> header_table['E'][1].name
|
||||||
|
'E'
|
||||||
|
"""
|
||||||
|
if items[0] in in_tree.children:
|
||||||
|
in_tree.children[items[0]].inc(count)
|
||||||
|
else:
|
||||||
|
in_tree.children[items[0]] = TreeNode(items[0], count, in_tree)
|
||||||
|
if header_table[items[0]][1] is None:
|
||||||
|
header_table[items[0]][1] = in_tree.children[items[0]]
|
||||||
|
else:
|
||||||
|
update_header(header_table[items[0]][1], in_tree.children[items[0]])
|
||||||
|
if len(items) > 1:
|
||||||
|
update_tree(items[1:], in_tree.children[items[0]], header_table, count)
|
||||||
|
|
||||||
|
|
||||||
|
def update_header(node_to_test: TreeNode, target_node: TreeNode) -> TreeNode:
|
||||||
|
"""
|
||||||
|
Update the header table with a node link.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
node_to_test: The node to be updated in the header table.
|
||||||
|
target_node: The node to link to.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
>>> data_set = [
|
||||||
|
... ['A', 'B', 'C'],
|
||||||
|
... ['A', 'C'],
|
||||||
|
... ['A', 'B', 'E'],
|
||||||
|
... ['A', 'B', 'C', 'E'],
|
||||||
|
... ['B', 'E']
|
||||||
|
... ]
|
||||||
|
>>> min_sup = 2
|
||||||
|
>>> fp_tree, header_table = create_tree(data_set, min_sup)
|
||||||
|
>>> fp_tree
|
||||||
|
TreeNode('Null Set', 1, None)
|
||||||
|
>>> node1 = TreeNode("A", 3, None)
|
||||||
|
>>> node2 = TreeNode("B", 4, None)
|
||||||
|
>>> node1
|
||||||
|
TreeNode('A', 3, None)
|
||||||
|
>>> node1 = update_header(node1, node2)
|
||||||
|
>>> node1
|
||||||
|
TreeNode('A', 3, None)
|
||||||
|
>>> node1.node_link
|
||||||
|
TreeNode('B', 4, None)
|
||||||
|
>>> node2.node_link is None
|
||||||
|
True
|
||||||
|
"""
|
||||||
|
while node_to_test.node_link is not None:
|
||||||
|
node_to_test = node_to_test.node_link
|
||||||
|
if node_to_test.node_link is None:
|
||||||
|
node_to_test.node_link = target_node
|
||||||
|
# Return the updated node
|
||||||
|
return node_to_test
|
||||||
|
|
||||||
|
|
||||||
|
def ascend_tree(leaf_node: TreeNode, prefix_path: list[str]) -> None:
|
||||||
|
"""
|
||||||
|
Ascend the FP-Tree from a leaf node to its root, adding item names to the prefix
|
||||||
|
path.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
leaf_node: The leaf node to start ascending from.
|
||||||
|
prefix_path: A list to store the item as they are ascended.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
>>> data_set = [
|
||||||
|
... ['A', 'B', 'C'],
|
||||||
|
... ['A', 'C'],
|
||||||
|
... ['A', 'B', 'E'],
|
||||||
|
... ['A', 'B', 'C', 'E'],
|
||||||
|
... ['B', 'E']
|
||||||
|
... ]
|
||||||
|
>>> min_sup = 2
|
||||||
|
>>> fp_tree, header_table = create_tree(data_set, min_sup)
|
||||||
|
|
||||||
|
>>> path = []
|
||||||
|
>>> ascend_tree(fp_tree.children['A'], path)
|
||||||
|
>>> path # ascending from a leaf node 'A'
|
||||||
|
['A']
|
||||||
|
"""
|
||||||
|
if leaf_node.parent is not None:
|
||||||
|
prefix_path.append(leaf_node.name)
|
||||||
|
ascend_tree(leaf_node.parent, prefix_path)
|
||||||
|
|
||||||
|
|
||||||
|
def find_prefix_path(base_pat: frozenset, tree_node: TreeNode | None) -> dict:
|
||||||
|
"""
|
||||||
|
Find the conditional pattern base for a given base pattern.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
base_pat: The base pattern for which to find the conditional pattern base.
|
||||||
|
tree_node: The node in the FP-Tree.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
>>> data_set = [
|
||||||
|
... ['A', 'B', 'C'],
|
||||||
|
... ['A', 'C'],
|
||||||
|
... ['A', 'B', 'E'],
|
||||||
|
... ['A', 'B', 'C', 'E'],
|
||||||
|
... ['B', 'E']
|
||||||
|
... ]
|
||||||
|
>>> min_sup = 2
|
||||||
|
>>> fp_tree, header_table = create_tree(data_set, min_sup)
|
||||||
|
>>> fp_tree
|
||||||
|
TreeNode('Null Set', 1, None)
|
||||||
|
>>> len(header_table)
|
||||||
|
4
|
||||||
|
>>> base_pattern = frozenset(['A'])
|
||||||
|
>>> sorted(find_prefix_path(base_pattern, fp_tree.children['A']))
|
||||||
|
[]
|
||||||
|
"""
|
||||||
|
cond_pats: dict = {}
|
||||||
|
while tree_node is not None:
|
||||||
|
prefix_path: list = []
|
||||||
|
ascend_tree(tree_node, prefix_path)
|
||||||
|
if len(prefix_path) > 1:
|
||||||
|
cond_pats[frozenset(prefix_path[1:])] = tree_node.count
|
||||||
|
tree_node = tree_node.node_link
|
||||||
|
return cond_pats
|
||||||
|
|
||||||
|
|
||||||
|
def mine_tree(
|
||||||
|
in_tree: TreeNode,
|
||||||
|
header_table: dict,
|
||||||
|
min_sup: int,
|
||||||
|
pre_fix: set,
|
||||||
|
freq_item_list: list,
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
Mine the FP-Tree recursively to discover frequent itemsets.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
in_tree: The FP-Tree to mine.
|
||||||
|
header_table: The header table dictionary with item information.
|
||||||
|
min_sup: The minimum support threshold.
|
||||||
|
pre_fix: A set of items as a prefix for the itemsets being mined.
|
||||||
|
freq_item_list: A list to store the frequent itemsets.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
>>> data_set = [
|
||||||
|
... ['A', 'B', 'C'],
|
||||||
|
... ['A', 'C'],
|
||||||
|
... ['A', 'B', 'E'],
|
||||||
|
... ['A', 'B', 'C', 'E'],
|
||||||
|
... ['B', 'E']
|
||||||
|
... ]
|
||||||
|
>>> min_sup = 2
|
||||||
|
>>> fp_tree, header_table = create_tree(data_set, min_sup)
|
||||||
|
>>> fp_tree
|
||||||
|
TreeNode('Null Set', 1, None)
|
||||||
|
>>> frequent_itemsets = []
|
||||||
|
>>> mine_tree(fp_tree, header_table, min_sup, set([]), frequent_itemsets)
|
||||||
|
>>> expe_itm = [{'C'}, {'C', 'A'}, {'E'}, {'A', 'E'}, {'E', 'B'}, {'A'}, {'B'}]
|
||||||
|
>>> all(expected in frequent_itemsets for expected in expe_itm)
|
||||||
|
True
|
||||||
|
"""
|
||||||
|
sorted_items = sorted(header_table.items(), key=lambda item_info: item_info[1][0])
|
||||||
|
big_l = [item[0] for item in sorted_items]
|
||||||
|
for base_pat in big_l:
|
||||||
|
new_freq_set = pre_fix.copy()
|
||||||
|
new_freq_set.add(base_pat)
|
||||||
|
freq_item_list.append(new_freq_set)
|
||||||
|
cond_patt_bases = find_prefix_path(base_pat, header_table[base_pat][1])
|
||||||
|
my_cond_tree, my_head = create_tree(list(cond_patt_bases), min_sup)
|
||||||
|
if my_head is not None:
|
||||||
|
# Pass header_table[base_pat][1] as node_to_test to update_header
|
||||||
|
header_table[base_pat][1] = update_header(
|
||||||
|
header_table[base_pat][1], my_cond_tree
|
||||||
|
)
|
||||||
|
mine_tree(my_cond_tree, my_head, min_sup, new_freq_set, freq_item_list)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
from doctest import testmod
|
||||||
|
|
||||||
|
testmod()
|
||||||
|
data_set: list[frozenset] = [
|
||||||
|
frozenset(["bread", "milk", "cheese"]),
|
||||||
|
frozenset(["bread", "milk"]),
|
||||||
|
frozenset(["bread", "diapers"]),
|
||||||
|
frozenset(["bread", "milk", "diapers"]),
|
||||||
|
frozenset(["milk", "diapers"]),
|
||||||
|
frozenset(["milk", "cheese"]),
|
||||||
|
frozenset(["diapers", "cheese"]),
|
||||||
|
frozenset(["bread", "milk", "cheese", "diapers"]),
|
||||||
|
]
|
||||||
|
print(f"{len(data_set) = }")
|
||||||
|
fp_tree, header_table = create_tree(data_set, min_sup=3)
|
||||||
|
print(f"{fp_tree = }")
|
||||||
|
print(f"{len(header_table) = }")
|
||||||
|
freq_items: list = []
|
||||||
|
mine_tree(fp_tree, header_table, 3, set(), freq_items)
|
||||||
|
print(f"{freq_items = }")
|
Loading…
Reference in New Issue
Block a user