mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-23 21:11:08 +00:00
Extend power iteration to handle complex Hermitian input matrices (#5925)
* works python3 -m unittest discover --start-directory src --pattern "power*.py" --t . -v * cleanup * revert switch to unittest * fix flake8
This commit is contained in:
parent
d28ac6483a
commit
54f765bdd0
|
@ -9,10 +9,10 @@ def power_iteration(
|
|||
) -> tuple[float, np.ndarray]:
|
||||
"""
|
||||
Power Iteration.
|
||||
Find the largest eignevalue and corresponding eigenvector
|
||||
Find the largest eigenvalue and corresponding eigenvector
|
||||
of matrix input_matrix given a random vector in the same space.
|
||||
Will work so long as vector has component of largest eigenvector.
|
||||
input_matrix must be symmetric.
|
||||
input_matrix must be either real or Hermitian.
|
||||
|
||||
Input
|
||||
input_matrix: input matrix whose largest eigenvalue we will find.
|
||||
|
@ -41,6 +41,12 @@ def power_iteration(
|
|||
assert np.shape(input_matrix)[0] == np.shape(input_matrix)[1]
|
||||
# Ensure proper dimensionality.
|
||||
assert np.shape(input_matrix)[0] == np.shape(vector)[0]
|
||||
# Ensure inputs are either both complex or both real
|
||||
assert np.iscomplexobj(input_matrix) == np.iscomplexobj(vector)
|
||||
is_complex = np.iscomplexobj(input_matrix)
|
||||
if is_complex:
|
||||
# Ensure complex input_matrix is Hermitian
|
||||
assert np.array_equal(input_matrix, input_matrix.conj().T)
|
||||
|
||||
# Set convergence to False. Will define convergence when we exceed max_iterations
|
||||
# or when we have small changes from one iteration to next.
|
||||
|
@ -57,7 +63,8 @@ def power_iteration(
|
|||
vector = w / np.linalg.norm(w)
|
||||
# Find rayleigh quotient
|
||||
# (faster than usual b/c we know vector is normalized already)
|
||||
lamda = np.dot(vector.T, np.dot(input_matrix, vector))
|
||||
vectorH = vector.conj().T if is_complex else vector.T
|
||||
lamda = np.dot(vectorH, np.dot(input_matrix, vector))
|
||||
|
||||
# Check convergence.
|
||||
error = np.abs(lamda - lamda_previous) / lamda
|
||||
|
@ -68,6 +75,9 @@ def power_iteration(
|
|||
|
||||
lamda_previous = lamda
|
||||
|
||||
if is_complex:
|
||||
lamda = np.real(lamda)
|
||||
|
||||
return lamda, vector
|
||||
|
||||
|
||||
|
@ -75,26 +85,40 @@ def test_power_iteration() -> None:
|
|||
"""
|
||||
>>> test_power_iteration() # self running tests
|
||||
"""
|
||||
# Our implementation.
|
||||
input_matrix = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]])
|
||||
vector = np.array([41, 4, 20])
|
||||
eigen_value, eigen_vector = power_iteration(input_matrix, vector)
|
||||
real_input_matrix = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]])
|
||||
real_vector = np.array([41, 4, 20])
|
||||
complex_input_matrix = real_input_matrix.astype(np.complex128)
|
||||
imag_matrix = np.triu(1j * complex_input_matrix, 1)
|
||||
complex_input_matrix += imag_matrix
|
||||
complex_input_matrix += -1 * imag_matrix.T
|
||||
complex_vector = np.array([41, 4, 20]).astype(np.complex128)
|
||||
|
||||
# Numpy implementation.
|
||||
for problem_type in ["real", "complex"]:
|
||||
if problem_type == "real":
|
||||
input_matrix = real_input_matrix
|
||||
vector = real_vector
|
||||
elif problem_type == "complex":
|
||||
input_matrix = complex_input_matrix
|
||||
vector = complex_vector
|
||||
|
||||
# Get eigen values and eigen vectors using built in numpy
|
||||
# eigh (eigh used for symmetric or hermetian matrices).
|
||||
eigen_values, eigen_vectors = np.linalg.eigh(input_matrix)
|
||||
# Last eigen value is the maximum one.
|
||||
eigen_value_max = eigen_values[-1]
|
||||
# Last column in this matrix is eigen vector corresponding to largest eigen value.
|
||||
eigen_vector_max = eigen_vectors[:, -1]
|
||||
# Our implementation.
|
||||
eigen_value, eigen_vector = power_iteration(input_matrix, vector)
|
||||
|
||||
# Check our implementation and numpy gives close answers.
|
||||
assert np.abs(eigen_value - eigen_value_max) <= 1e-6
|
||||
# Take absolute values element wise of each eigenvector.
|
||||
# as they are only unique to a minus sign.
|
||||
assert np.linalg.norm(np.abs(eigen_vector) - np.abs(eigen_vector_max)) <= 1e-6
|
||||
# Numpy implementation.
|
||||
|
||||
# Get eigenvalues and eigenvectors using built-in numpy
|
||||
# eigh (eigh used for symmetric or hermetian matrices).
|
||||
eigen_values, eigen_vectors = np.linalg.eigh(input_matrix)
|
||||
# Last eigenvalue is the maximum one.
|
||||
eigen_value_max = eigen_values[-1]
|
||||
# Last column in this matrix is eigenvector corresponding to largest eigenvalue.
|
||||
eigen_vector_max = eigen_vectors[:, -1]
|
||||
|
||||
# Check our implementation and numpy gives close answers.
|
||||
assert np.abs(eigen_value - eigen_value_max) <= 1e-6
|
||||
# Take absolute values element wise of each eigenvector.
|
||||
# as they are only unique to a minus sign.
|
||||
assert np.linalg.norm(np.abs(eigen_vector) - np.abs(eigen_vector_max)) <= 1e-6
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
Loading…
Reference in New Issue
Block a user