mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-03-12 09:39:49 +00:00
Added doctests
This commit is contained in:
parent
2dc60f475b
commit
61945d03c6
@ -47,47 +47,73 @@ class RidgeRegression:
|
|||||||
scaled_features = (features - mean) / std
|
scaled_features = (features - mean) / std
|
||||||
return scaled_features, mean, std
|
return scaled_features, mean, std
|
||||||
|
|
||||||
def fit(self, x: np.ndarray, y: np.ndarray) -> None:
|
def fit(self, features: np.ndarray, target: np.ndarray) -> None:
|
||||||
"""
|
"""
|
||||||
Fit the Ridge Regression model to the training data.
|
Fit the Ridge Regression model to the training data.
|
||||||
|
|
||||||
:param x: Input features, shape (m, n)
|
:param features: Input features, shape (m, n)
|
||||||
:param y: Target values, shape (m,)
|
:param target: Target values, shape (m,)
|
||||||
|
|
||||||
|
Example:
|
||||||
|
>>> rr = RidgeRegression(alpha=0.01, lambda_=0.1, iterations=10)
|
||||||
|
>>> features = np.array([[1, 2], [2, 3], [4, 6]])
|
||||||
|
>>> target = np.array([1, 2, 3])
|
||||||
|
>>> rr.fit(features, target)
|
||||||
|
>>> rr.theta is not None
|
||||||
|
True
|
||||||
"""
|
"""
|
||||||
x_scaled, mean, std = self.feature_scaling(x) # Normalize features
|
features_scaled, mean, std = self.feature_scaling(features) # Normalize features
|
||||||
m, n = x_scaled.shape
|
m, n = features_scaled.shape
|
||||||
self.theta = np.zeros(n) # Initialize weights to zeros
|
self.theta = np.zeros(n) # Initialize weights to zeros
|
||||||
|
|
||||||
for _ in range(self.iterations):
|
for i in range(self.iterations):
|
||||||
predictions = x_scaled.dot(self.theta)
|
predictions = features_scaled.dot(self.theta)
|
||||||
error = predictions - y
|
error = predictions - target
|
||||||
|
|
||||||
# Compute gradient with L2 regularization
|
# Compute gradient with L2 regularization
|
||||||
gradient = (x_scaled.T.dot(error) + self.lambda_ * self.theta) / m
|
gradient = (features_scaled.T.dot(error) + self.lambda_ * self.theta) / m
|
||||||
self.theta -= self.alpha * gradient # Update weights
|
self.theta -= self.alpha * gradient # Update weights
|
||||||
|
|
||||||
def predict(self, x: np.ndarray) -> np.ndarray:
|
def predict(self, features: np.ndarray) -> np.ndarray:
|
||||||
"""
|
"""
|
||||||
Predict values using the trained model.
|
Predict values using the trained model.
|
||||||
|
|
||||||
:param x: Input features, shape (m, n)
|
:param features: Input features, shape (m, n)
|
||||||
:return: Predicted values, shape (m,)
|
:return: Predicted values, shape (m,)
|
||||||
"""
|
|
||||||
x_scaled, _, _ = self.feature_scaling(x) # Scale features using training data
|
|
||||||
return x_scaled.dot(self.theta)
|
|
||||||
|
|
||||||
def compute_cost(self, x: np.ndarray, y: np.ndarray) -> float:
|
Example:
|
||||||
|
>>> rr = RidgeRegression(alpha=0.01, lambda_=0.1, iterations=10)
|
||||||
|
>>> features = np.array([[1, 2], [2, 3], [4, 6]])
|
||||||
|
>>> target = np.array([1, 2, 3])
|
||||||
|
>>> rr.fit(features, target)
|
||||||
|
>>> predictions = rr.predict(features)
|
||||||
|
>>> predictions.shape == target.shape
|
||||||
|
True
|
||||||
|
"""
|
||||||
|
features_scaled, _, _ = self.feature_scaling(features) # Scale features using training data
|
||||||
|
return features_scaled.dot(self.theta)
|
||||||
|
|
||||||
|
def compute_cost(self, features: np.ndarray, target: np.ndarray) -> float:
|
||||||
"""
|
"""
|
||||||
Compute the cost function with regularization.
|
Compute the cost function with regularization.
|
||||||
|
|
||||||
:param x: Input features, shape (m, n)
|
:param features: Input features, shape (m, n)
|
||||||
:param y: Target values, shape (m,)
|
:param target: Target values, shape (m,)
|
||||||
:return: Computed cost
|
:return: Computed cost
|
||||||
|
|
||||||
|
Example:
|
||||||
|
>>> rr = RidgeRegression(alpha=0.01, lambda_=0.1, iterations=10)
|
||||||
|
>>> features = np.array([[1, 2], [2, 3], [4, 6]])
|
||||||
|
>>> target = np.array([1, 2, 3])
|
||||||
|
>>> rr.fit(features, target)
|
||||||
|
>>> cost = rr.compute_cost(features, target)
|
||||||
|
>>> isinstance(cost, float)
|
||||||
|
True
|
||||||
"""
|
"""
|
||||||
x_scaled, _, _ = self.feature_scaling(x) # Scale features using training data
|
features_scaled, _, _ = self.feature_scaling(features) # Scale features using training data
|
||||||
m = len(y)
|
m = len(target)
|
||||||
predictions = x_scaled.dot(self.theta)
|
predictions = features_scaled.dot(self.theta)
|
||||||
cost = (1 / (2 * m)) * np.sum((predictions - y) ** 2) + (
|
cost = (1 / (2 * m)) * np.sum((predictions - target) ** 2) + (
|
||||||
self.lambda_ / (2 * m)
|
self.lambda_ / (2 * m)
|
||||||
) * np.sum(self.theta**2)
|
) * np.sum(self.theta**2)
|
||||||
return cost
|
return cost
|
||||||
@ -99,6 +125,14 @@ class RidgeRegression:
|
|||||||
:param y_true: Actual target values, shape (m,)
|
:param y_true: Actual target values, shape (m,)
|
||||||
:param y_pred: Predicted target values, shape (m,)
|
:param y_pred: Predicted target values, shape (m,)
|
||||||
:return: MAE
|
:return: MAE
|
||||||
|
|
||||||
|
Example:
|
||||||
|
>>> rr = RidgeRegression(alpha=0.01, lambda_=0.1, iterations=10)
|
||||||
|
>>> y_true = np.array([1, 2, 3])
|
||||||
|
>>> y_pred = np.array([1.1, 2.1, 2.9])
|
||||||
|
>>> mae = rr.mean_absolute_error(y_true, y_pred)
|
||||||
|
>>> isinstance(mae, float)
|
||||||
|
True
|
||||||
"""
|
"""
|
||||||
return np.mean(np.abs(y_true - y_pred))
|
return np.mean(np.abs(y_true - y_pred))
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user