Added doctests

This commit is contained in:
Harmanaya Sharma 2024-10-23 00:08:52 +05:30
parent 2dc60f475b
commit 61945d03c6

View File

@ -47,47 +47,73 @@ class RidgeRegression:
scaled_features = (features - mean) / std
return scaled_features, mean, std
def fit(self, x: np.ndarray, y: np.ndarray) -> None:
def fit(self, features: np.ndarray, target: np.ndarray) -> None:
"""
Fit the Ridge Regression model to the training data.
:param x: Input features, shape (m, n)
:param y: Target values, shape (m,)
:param features: Input features, shape (m, n)
:param target: Target values, shape (m,)
Example:
>>> rr = RidgeRegression(alpha=0.01, lambda_=0.1, iterations=10)
>>> features = np.array([[1, 2], [2, 3], [4, 6]])
>>> target = np.array([1, 2, 3])
>>> rr.fit(features, target)
>>> rr.theta is not None
True
"""
x_scaled, mean, std = self.feature_scaling(x) # Normalize features
m, n = x_scaled.shape
features_scaled, mean, std = self.feature_scaling(features) # Normalize features
m, n = features_scaled.shape
self.theta = np.zeros(n) # Initialize weights to zeros
for _ in range(self.iterations):
predictions = x_scaled.dot(self.theta)
error = predictions - y
for i in range(self.iterations):
predictions = features_scaled.dot(self.theta)
error = predictions - target
# Compute gradient with L2 regularization
gradient = (x_scaled.T.dot(error) + self.lambda_ * self.theta) / m
gradient = (features_scaled.T.dot(error) + self.lambda_ * self.theta) / m
self.theta -= self.alpha * gradient # Update weights
def predict(self, x: np.ndarray) -> np.ndarray:
def predict(self, features: np.ndarray) -> np.ndarray:
"""
Predict values using the trained model.
:param x: Input features, shape (m, n)
:param features: Input features, shape (m, n)
:return: Predicted values, shape (m,)
"""
x_scaled, _, _ = self.feature_scaling(x) # Scale features using training data
return x_scaled.dot(self.theta)
def compute_cost(self, x: np.ndarray, y: np.ndarray) -> float:
Example:
>>> rr = RidgeRegression(alpha=0.01, lambda_=0.1, iterations=10)
>>> features = np.array([[1, 2], [2, 3], [4, 6]])
>>> target = np.array([1, 2, 3])
>>> rr.fit(features, target)
>>> predictions = rr.predict(features)
>>> predictions.shape == target.shape
True
"""
features_scaled, _, _ = self.feature_scaling(features) # Scale features using training data
return features_scaled.dot(self.theta)
def compute_cost(self, features: np.ndarray, target: np.ndarray) -> float:
"""
Compute the cost function with regularization.
:param x: Input features, shape (m, n)
:param y: Target values, shape (m,)
:param features: Input features, shape (m, n)
:param target: Target values, shape (m,)
:return: Computed cost
Example:
>>> rr = RidgeRegression(alpha=0.01, lambda_=0.1, iterations=10)
>>> features = np.array([[1, 2], [2, 3], [4, 6]])
>>> target = np.array([1, 2, 3])
>>> rr.fit(features, target)
>>> cost = rr.compute_cost(features, target)
>>> isinstance(cost, float)
True
"""
x_scaled, _, _ = self.feature_scaling(x) # Scale features using training data
m = len(y)
predictions = x_scaled.dot(self.theta)
cost = (1 / (2 * m)) * np.sum((predictions - y) ** 2) + (
features_scaled, _, _ = self.feature_scaling(features) # Scale features using training data
m = len(target)
predictions = features_scaled.dot(self.theta)
cost = (1 / (2 * m)) * np.sum((predictions - target) ** 2) + (
self.lambda_ / (2 * m)
) * np.sum(self.theta**2)
return cost
@ -99,6 +125,14 @@ class RidgeRegression:
:param y_true: Actual target values, shape (m,)
:param y_pred: Predicted target values, shape (m,)
:return: MAE
Example:
>>> rr = RidgeRegression(alpha=0.01, lambda_=0.1, iterations=10)
>>> y_true = np.array([1, 2, 3])
>>> y_pred = np.array([1.1, 2.1, 2.9])
>>> mae = rr.mean_absolute_error(y_true, y_pred)
>>> isinstance(mae, float)
True
"""
return np.mean(np.abs(y_true - y_pred))