Change occurrences of str.format to f-strings (#4118)

* f-string update rsa_cipher.py

* f-string update rsa_key_generator.py

* f-string update burrows_wheeler.py

* f-string update non_recursive_segment_tree.py

* f-string update red_black_tree.py

* f-string update deque_doubly.py

* f-string update climbing_stairs.py

* f-string update iterating_through_submasks.py

* f-string update knn_sklearn.py

* f-string update 3n_plus_1.py

* f-string update quadratic_equations_complex_numbers.py

* f-string update nth_fibonacci_using_matrix_exponentiation.py

* f-string update sherman_morrison.py

* f-string update levenshtein_distance.py

* fix lines that were too long
This commit is contained in:
CarsonHam 2021-02-22 23:53:49 -06:00 committed by GitHub
parent f680806894
commit 61f3119467
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
14 changed files with 38 additions and 39 deletions

View File

@ -118,7 +118,7 @@ def encryptAndWriteToFile(
for i in range(len(encryptedBlocks)): for i in range(len(encryptedBlocks)):
encryptedBlocks[i] = str(encryptedBlocks[i]) encryptedBlocks[i] = str(encryptedBlocks[i])
encryptedContent = ",".join(encryptedBlocks) encryptedContent = ",".join(encryptedBlocks)
encryptedContent = "{}_{}_{}".format(len(message), blockSize, encryptedContent) encryptedContent = f"{len(message)}_{blockSize}_{encryptedContent}"
with open(messageFilename, "w") as fo: with open(messageFilename, "w") as fo:
fo.write(encryptedContent) fo.write(encryptedContent)
return encryptedContent return encryptedContent

View File

@ -49,11 +49,11 @@ def makeKeyFiles(name: int, keySize: int) -> None:
publicKey, privateKey = generateKey(keySize) publicKey, privateKey = generateKey(keySize)
print("\nWriting public key to file %s_pubkey.txt..." % name) print("\nWriting public key to file %s_pubkey.txt..." % name)
with open("%s_pubkey.txt" % name, "w") as out_file: with open("%s_pubkey.txt" % name, "w") as out_file:
out_file.write("{},{},{}".format(keySize, publicKey[0], publicKey[1])) out_file.write(f"{keySize},{publicKey[0]},{publicKey[1]}")
print("Writing private key to file %s_privkey.txt..." % name) print("Writing private key to file %s_privkey.txt..." % name)
with open("%s_privkey.txt" % name, "w") as out_file: with open("%s_privkey.txt" % name, "w") as out_file:
out_file.write("{},{},{}".format(keySize, privateKey[0], privateKey[1])) out_file.write(f"{keySize},{privateKey[0]},{privateKey[1]}")
if __name__ == "__main__": if __name__ == "__main__":

View File

@ -157,11 +157,12 @@ if __name__ == "__main__":
entry_msg = "Provide a string that I will generate its BWT transform: " entry_msg = "Provide a string that I will generate its BWT transform: "
s = input(entry_msg).strip() s = input(entry_msg).strip()
result = bwt_transform(s) result = bwt_transform(s)
bwt_output_msg = "Burrows Wheeler transform for string '{}' results in '{}'" print(
print(bwt_output_msg.format(s, result["bwt_string"])) f"Burrows Wheeler transform for string '{s}' results "
original_string = reverse_bwt(result["bwt_string"], result["idx_original_string"]) f"in '{result['bwt_string']}'"
fmt = ( )
"Reversing Burrows Wheeler transform for entry '{}' we get original" original_string = reverse_bwt(result["bwt_string"], result["idx_original_string"])
" string '{}'" print(
f"Reversing Burrows Wheeler transform for entry '{result['bwt_string']}' "
f"we get original string '{original_string}'"
) )
print(fmt.format(result["bwt_string"], original_string))

View File

@ -49,7 +49,7 @@ class SegmentTree:
:param arr: list of elements for the segment tree :param arr: list of elements for the segment tree
:param fnc: commutative function for combine two elements :param fnc: commutative function for combine two elements
>>> SegmentTree(['a', 'b', 'c'], lambda a, b: '{}{}'.format(a, b)).query(0, 2) >>> SegmentTree(['a', 'b', 'c'], lambda a, b: f'{a}{b}').query(0, 2)
'abc' 'abc'
>>> SegmentTree([(1, 2), (2, 3), (3, 4)], >>> SegmentTree([(1, 2), (2, 3), (3, 4)],
... lambda a, b: (a[0] + b[0], a[1] + b[1])).query(0, 2) ... lambda a, b: (a[0] + b[0], a[1] + b[1])).query(0, 2)

View File

@ -475,11 +475,13 @@ class RedBlackTree:
from pprint import pformat from pprint import pformat
if self.left is None and self.right is None: if self.left is None and self.right is None:
return "'{} {}'".format(self.label, (self.color and "red") or "blk") return f"'{self.label} {(self.color and 'red') or 'blk'}'"
return pformat( return pformat(
{ {
"%s %s" f"{self.label} {(self.color and 'red') or 'blk'}": (
% (self.label, (self.color and "red") or "blk"): (self.left, self.right) self.left,
self.right,
)
}, },
indent=1, indent=1,
) )

View File

@ -20,8 +20,8 @@ class _DoublyLinkedBase:
self._next = link_n self._next = link_n
def has_next_and_prev(self): def has_next_and_prev(self):
return " Prev -> {}, Next -> {}".format( return (
self._prev is not None, self._next is not None f" Prev -> {self._prev is not None}, Next -> {self._next is not None}"
) )
def __init__(self): def __init__(self):

View File

@ -25,8 +25,9 @@ def climb_stairs(n: int) -> int:
... ...
AssertionError: n needs to be positive integer, your input -7 AssertionError: n needs to be positive integer, your input -7
""" """
fmt = "n needs to be positive integer, your input {}" assert (
assert isinstance(n, int) and n > 0, fmt.format(n) isinstance(n, int) and n > 0
), f"n needs to be positive integer, your input {n}"
if n == 1: if n == 1:
return 1 return 1
dp = [0] * (n + 1) dp = [0] * (n + 1)

View File

@ -37,8 +37,9 @@ def list_of_submasks(mask: int) -> list[int]:
""" """
fmt = "mask needs to be positive integer, your input {}" assert (
assert isinstance(mask, int) and mask > 0, fmt.format(mask) isinstance(mask, int) and mask > 0
), f"mask needs to be positive integer, your input {mask}"
""" """
first submask iterated will be mask itself then operation will be performed first submask iterated will be mask itself then operation will be performed

View File

@ -26,6 +26,6 @@ X_new = [[1, 2, 1, 4], [2, 3, 4, 5]]
prediction = knn.predict(X_new) prediction = knn.predict(X_new)
print( print(
"\nNew array: \n {}" f"\nNew array: \n {X_new}\n\nTarget Names Prediction: \n"
"\n\nTarget Names Prediction: \n {}".format(X_new, iris["target_names"][prediction]) f" {iris['target_names'][prediction]}"
) )

View File

@ -9,7 +9,7 @@ def n31(a: int) -> tuple[list[int], int]:
""" """
if not isinstance(a, int): if not isinstance(a, int):
raise TypeError("Must be int, not {}".format(type(a).__name__)) raise TypeError(f"Must be int, not {type(a).__name__}")
if a < 1: if a < 1:
raise ValueError(f"Given integer must be greater than 1, not {a}") raise ValueError(f"Given integer must be greater than 1, not {a}")

View File

@ -30,8 +30,8 @@ def quadratic_roots(a: int, b: int, c: int) -> tuple[complex, complex]:
def main(): def main():
solutions = quadratic_roots(a=5, b=6, c=1) solution1, solution2 = quadratic_roots(a=5, b=6, c=1)
print("The solutions are: {} and {}".format(*solutions)) print(f"The solutions are: {solution1} and {solution2}")
if __name__ == "__main__": if __name__ == "__main__":

View File

@ -71,13 +71,13 @@ def nth_fibonacci_bruteforce(n):
def main(): def main():
fmt = (
"{} fibonacci number using matrix exponentiation is {} and using bruteforce "
"is {}\n"
)
for ordinal in "0th 1st 2nd 3rd 10th 100th 1000th".split(): for ordinal in "0th 1st 2nd 3rd 10th 100th 1000th".split():
n = int("".join(c for c in ordinal if c in "0123456789")) # 1000th --> 1000 n = int("".join(c for c in ordinal if c in "0123456789")) # 1000th --> 1000
print(fmt.format(ordinal, nth_fibonacci_matrix(n), nth_fibonacci_bruteforce(n))) print(
f"{ordinal} fibonacci number using matrix exponentiation is "
f"{nth_fibonacci_matrix(n)} and using bruteforce is "
f"{nth_fibonacci_bruteforce(n)}\n"
)
# from timeit import timeit # from timeit import timeit
# print(timeit("nth_fibonacci_matrix(1000000)", # print(timeit("nth_fibonacci_matrix(1000000)",
# "from main import nth_fibonacci_matrix", number=5)) # "from main import nth_fibonacci_matrix", number=5))

View File

@ -175,9 +175,7 @@ class Matrix:
result[r, c] += self[r, i] * another[i, c] result[r, c] += self[r, i] * another[i, c]
return result return result
else: else:
raise TypeError( raise TypeError(f"Unsupported type given for another ({type(another)})")
"Unsupported type given for another ({})".format(type(another))
)
def transpose(self): def transpose(self):
""" """
@ -260,7 +258,7 @@ if __name__ == "__main__":
print(f"v is {v}") print(f"v is {v}")
print("uv^T is %s" % (u * v.transpose())) print("uv^T is %s" % (u * v.transpose()))
# Sherman Morrison # Sherman Morrison
print("(a + uv^T)^(-1) is {}".format(ainv.ShermanMorrison(u, v))) print(f"(a + uv^T)^(-1) is {ainv.ShermanMorrison(u, v)}")
def test2(): def test2():
import doctest import doctest

View File

@ -69,8 +69,4 @@ if __name__ == "__main__":
second_word = input("Enter the second word:\n").strip() second_word = input("Enter the second word:\n").strip()
result = levenshtein_distance(first_word, second_word) result = levenshtein_distance(first_word, second_word)
print( print(f"Levenshtein distance between {first_word} and {second_word} is {result}")
"Levenshtein distance between {} and {} is {}".format(
first_word, second_word, result
)
)