mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-12-01 00:41:09 +00:00
commit convolution_neural_network.py
This commit is contained in:
parent
52ee9a1e12
commit
6e61ac19cd
|
@ -11,30 +11,15 @@
|
||||||
* Hiden layer of BP
|
* Hiden layer of BP
|
||||||
* Output layer of BP
|
* Output layer of BP
|
||||||
Author: Stephen Lee
|
Author: Stephen Lee
|
||||||
Program: PYTHON
|
Github: 245885195@qq.com
|
||||||
Date: 2017.9.20
|
Date: 2017.9.20
|
||||||
- - - - - -- - - - - - - - - - - - - - - - - - - - - - -
|
- - - - - -- - - - - - - - - - - - - - - - - - - - - - -
|
||||||
'''
|
'''
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
|
||||||
class CNN():
|
class CNN():
|
||||||
conv1 = []
|
|
||||||
w_conv1 = []
|
|
||||||
thre_conv1 = []
|
|
||||||
step_conv1 = 0
|
|
||||||
size_pooling1 = 0
|
|
||||||
num_bp1 = 0
|
|
||||||
num_bp2 = 0
|
|
||||||
num_bp3 = 0
|
|
||||||
thre_bp1 = []
|
|
||||||
thre_bp2 = []
|
|
||||||
wkj = np.mat([])
|
|
||||||
vji = np.mat([])
|
|
||||||
rate_weight = 0
|
|
||||||
rate_thre = 0
|
|
||||||
|
|
||||||
|
|
||||||
def __init__(self,conv1_get,size_p1,bp_num1,bp_num2,bp_num3,rate_w=0.2,rate_t=0.2):
|
def __init__(self,conv1_get,size_p1,bp_num1,bp_num2,bp_num3,rate_w=0.2,rate_t=0.2):
|
||||||
'''
|
'''
|
||||||
|
@ -63,7 +48,7 @@ class CNN():
|
||||||
|
|
||||||
|
|
||||||
def save_model(self,save_path):
|
def save_model(self,save_path):
|
||||||
#将模型保存
|
#save model dict with pickle
|
||||||
import pickle
|
import pickle
|
||||||
model_dic = {'num_bp1':self.num_bp1,
|
model_dic = {'num_bp1':self.num_bp1,
|
||||||
'num_bp2':self.num_bp2,
|
'num_bp2':self.num_bp2,
|
||||||
|
@ -82,35 +67,11 @@ class CNN():
|
||||||
with open(save_path, 'wb') as f:
|
with open(save_path, 'wb') as f:
|
||||||
pickle.dump(model_dic, f)
|
pickle.dump(model_dic, f)
|
||||||
|
|
||||||
print('模型已经保存: %s'% save_path)
|
print('Model saved: %s'% save_path)
|
||||||
|
|
||||||
|
|
||||||
def paste_model(self,save_path):
|
|
||||||
#实例方法,
|
|
||||||
#虽然这么写一点也不简洁。。。。
|
|
||||||
#卸载这个里面的话,只是用于修改已经存在的模型,要根据读取的数据返回实例的模型,再写一个吧
|
|
||||||
import pickle
|
|
||||||
with open(save_path, 'rb') as f:
|
|
||||||
model_dic = pickle.load(f)
|
|
||||||
self.num_bp1 = model_dic.get('num_bp1')
|
|
||||||
self.num_bp2 = model_dic.get('num_bp2')
|
|
||||||
self.num_bp3 = model_dic.get('num_bp3')
|
|
||||||
self.conv1 = model_dic.get('conv1')
|
|
||||||
self.step_conv1 = model_dic.get('step_conv1')
|
|
||||||
self.size_pooling1 = model_dic.get('size_pooling1')
|
|
||||||
self.rate_weight = model_dic.get('rate_weight')
|
|
||||||
self.rate_thre = model_dic.get('rate_thre')
|
|
||||||
self.w_conv1 = model_dic.get('w_conv1')
|
|
||||||
self.wkj = model_dic.get('wkj')
|
|
||||||
self.vji = model_dic.get('vji')
|
|
||||||
self.thre_conv1 = model_dic.get('thre_conv1')
|
|
||||||
self.thre_bp2 = model_dic.get('thre_bp2')
|
|
||||||
self.thre_bp3 = model_dic.get('thre_bp3')
|
|
||||||
print('已经成功读取模型')
|
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def ReadModel(cls,model_path):
|
def ReadModel(cls,model_path):
|
||||||
#类方法,读取保存的模型,返回一个实例。
|
#read saved model
|
||||||
import pickle
|
import pickle
|
||||||
with open(model_path, 'rb') as f:
|
with open(model_path, 'rb') as f:
|
||||||
model_dic = pickle.load(f)
|
model_dic = pickle.load(f)
|
||||||
|
@ -123,9 +84,9 @@ class CNN():
|
||||||
bp3 = model_dic.get('num_bp3')
|
bp3 = model_dic.get('num_bp3')
|
||||||
r_w = model_dic.get('rate_weight')
|
r_w = model_dic.get('rate_weight')
|
||||||
r_t = model_dic.get('rate_thre')
|
r_t = model_dic.get('rate_thre')
|
||||||
#创建实例
|
#create model instance
|
||||||
conv_ins = CNN(conv_get,size_p1,bp1,bp2,bp3,r_w,r_t)
|
conv_ins = CNN(conv_get,size_p1,bp1,bp2,bp3,r_w,r_t)
|
||||||
#修改实例的参数
|
#modify model parameter
|
||||||
conv_ins.w_conv1 = model_dic.get('w_conv1')
|
conv_ins.w_conv1 = model_dic.get('w_conv1')
|
||||||
conv_ins.wkj = model_dic.get('wkj')
|
conv_ins.wkj = model_dic.get('wkj')
|
||||||
conv_ins.vji = model_dic.get('vji')
|
conv_ins.vji = model_dic.get('vji')
|
||||||
|
@ -137,20 +98,22 @@ class CNN():
|
||||||
|
|
||||||
def sig(self,x):
|
def sig(self,x):
|
||||||
return 1 / (1 + np.exp(-1*x))
|
return 1 / (1 + np.exp(-1*x))
|
||||||
|
|
||||||
def do_round(self,x):
|
def do_round(self,x):
|
||||||
return round(x, 3)
|
return round(x, 3)
|
||||||
#卷积
|
|
||||||
def Convolute(self,data,convs,w_convs,thre_convs,conv_step):
|
def convolute(self,data,convs,w_convs,thre_convs,conv_step):
|
||||||
|
#convolution process
|
||||||
size_conv = convs[0]
|
size_conv = convs[0]
|
||||||
num_conv =convs[1]
|
num_conv =convs[1]
|
||||||
size_data = np.shape(data)[0]
|
size_data = np.shape(data)[0]
|
||||||
#得到原图像滑动的小图,data_focus
|
#get the data slice of original image data, data_focus
|
||||||
data_focus = []
|
data_focus = []
|
||||||
for i_focus in range(0, size_data - size_conv + 1, conv_step):
|
for i_focus in range(0, size_data - size_conv + 1, conv_step):
|
||||||
for j_focus in range(0, size_data - size_conv + 1, conv_step):
|
for j_focus in range(0, size_data - size_conv + 1, conv_step):
|
||||||
focus = data[i_focus:i_focus + size_conv, j_focus:j_focus + size_conv]
|
focus = data[i_focus:i_focus + size_conv, j_focus:j_focus + size_conv]
|
||||||
data_focus.append(focus)
|
data_focus.append(focus)
|
||||||
#计算所有卷积核得到的特征图,每个特征图以矩阵形式,存储为一个列表data_featuremap
|
#caculate the feature map of every single kernel, and saved as list of matrix
|
||||||
data_featuremap = []
|
data_featuremap = []
|
||||||
Size_FeatureMap = int((size_data - size_conv) / conv_step + 1)
|
Size_FeatureMap = int((size_data - size_conv) / conv_step + 1)
|
||||||
for i_map in range(num_conv):
|
for i_map in range(num_conv):
|
||||||
|
@ -161,15 +124,15 @@ class CNN():
|
||||||
featuremap = np.asmatrix(featuremap).reshape(Size_FeatureMap, Size_FeatureMap)
|
featuremap = np.asmatrix(featuremap).reshape(Size_FeatureMap, Size_FeatureMap)
|
||||||
data_featuremap.append(featuremap)
|
data_featuremap.append(featuremap)
|
||||||
|
|
||||||
#将data_focus中的focus展开为一维
|
#expanding the data slice to One dimenssion
|
||||||
focus1_list = []
|
focus1_list = []
|
||||||
for each_focus in data_focus:
|
for each_focus in data_focus:
|
||||||
focus1_list.extend(self.Expand_Mat(each_focus))
|
focus1_list.extend(self.Expand_Mat(each_focus))
|
||||||
focus_list = np.asarray(focus1_list)
|
focus_list = np.asarray(focus1_list)
|
||||||
return focus_list,data_featuremap
|
return focus_list,data_featuremap
|
||||||
|
|
||||||
# 池化
|
def pooling(self,featuremaps,size_pooling,type='average_pool'):
|
||||||
def Pooling(self,featuremaps,size_pooling):
|
#pooling process
|
||||||
size_map = len(featuremaps[0])
|
size_map = len(featuremaps[0])
|
||||||
size_pooled = int(size_map/size_pooling)
|
size_pooled = int(size_map/size_pooling)
|
||||||
featuremap_pooled = []
|
featuremap_pooled = []
|
||||||
|
@ -179,39 +142,40 @@ class CNN():
|
||||||
for i_focus in range(0,size_map,size_pooling):
|
for i_focus in range(0,size_map,size_pooling):
|
||||||
for j_focus in range(0, size_map, size_pooling):
|
for j_focus in range(0, size_map, size_pooling):
|
||||||
focus = map[i_focus:i_focus + size_pooling, j_focus:j_focus + size_pooling]
|
focus = map[i_focus:i_focus + size_pooling, j_focus:j_focus + size_pooling]
|
||||||
#平均池化
|
if type == 'average_pool':
|
||||||
|
#average pooling
|
||||||
map_pooled.append(np.average(focus))
|
map_pooled.append(np.average(focus))
|
||||||
#最大池化
|
elif type == 'max_pooling':
|
||||||
#map_pooled.append(np.max(focus))
|
#max pooling
|
||||||
|
map_pooled.append(np.max(focus))
|
||||||
map_pooled = np.asmatrix(map_pooled).reshape(size_pooled,size_pooled)
|
map_pooled = np.asmatrix(map_pooled).reshape(size_pooled,size_pooled)
|
||||||
featuremap_pooled.append(map_pooled)
|
featuremap_pooled.append(map_pooled)
|
||||||
return featuremap_pooled
|
return featuremap_pooled
|
||||||
|
|
||||||
def Expand(self,datas):
|
def _expand(self,datas):
|
||||||
#将三元的数据展开为1为的list
|
#expanding three dimension data to one dimension list
|
||||||
data_expanded = []
|
data_expanded = []
|
||||||
for i in range(len(datas)):
|
for i in range(len(datas)):
|
||||||
shapes = np.shape(datas[i])
|
shapes = np.shape(datas[i])
|
||||||
data_listed = datas[i].reshape(1,shapes[0]*shapes[1])
|
data_listed = datas[i].reshape(1,shapes[0]*shapes[1])
|
||||||
data_listed = data_listed.getA().tolist()[0]
|
data_listed = data_listed.getA().tolist()[0]
|
||||||
data_expanded.extend(data_listed)
|
data_expanded.extend(data_listed)
|
||||||
#连接所有数据
|
|
||||||
data_expanded = np.asarray(data_expanded)
|
data_expanded = np.asarray(data_expanded)
|
||||||
return data_expanded
|
return data_expanded
|
||||||
|
|
||||||
def Expand_Mat(self,data_mat):
|
def _expand_mat(self,data_mat):
|
||||||
#用来展开矩阵为一维的list
|
#expanding matrix to one dimension list
|
||||||
data_mat = np.asarray(data_mat)
|
data_mat = np.asarray(data_mat)
|
||||||
shapes = np.shape(data_mat)
|
shapes = np.shape(data_mat)
|
||||||
data_expanded = data_mat.reshape(1,shapes[0]*shapes[1])
|
data_expanded = data_mat.reshape(1,shapes[0]*shapes[1])
|
||||||
return data_expanded
|
return data_expanded
|
||||||
|
|
||||||
def Getpd_From_Pool(self,out_map,pd_pool,num_map,size_map,size_pooling):
|
def _calculate_gradient_from_pool(self,out_map,pd_pool,num_map,size_map,size_pooling):
|
||||||
'''
|
'''
|
||||||
误差反传,从pooled到前一个map, 例如将池化层6*6的误差矩阵扩大为12*12的误差矩阵
|
calcluate the gradient from the data slice of pool layer
|
||||||
pd_pool: 是采样层的误差,list形式。。。。要改要改
|
pd_pool: list of matrix
|
||||||
out_map: 前面特征图的输出,数量*size*size的列表形式
|
out_map: the shape of data slice(size_map*size_map)
|
||||||
return: pd_all:前面层所有的特征图的pd, num*size_map*size_map的列表形式
|
return: pd_all: list of matrix, [num, size_map, size_map]
|
||||||
'''
|
'''
|
||||||
pd_all = []
|
pd_all = []
|
||||||
i_pool = 0
|
i_pool = 0
|
||||||
|
@ -226,6 +190,7 @@ class CNN():
|
||||||
return pd_all
|
return pd_all
|
||||||
|
|
||||||
def trian(self,patterns,datas_train, datas_teach, n_repeat, error_accuracy,draw_e = bool):
|
def trian(self,patterns,datas_train, datas_teach, n_repeat, error_accuracy,draw_e = bool):
|
||||||
|
#model traning
|
||||||
print('----------------------Start Training-------------------------')
|
print('----------------------Start Training-------------------------')
|
||||||
print(' - - Shape: Train_Data ',np.shape(datas_train))
|
print(' - - Shape: Train_Data ',np.shape(datas_train))
|
||||||
print(' - - Shape: Teach_Data ',np.shape(datas_teach))
|
print(' - - Shape: Teach_Data ',np.shape(datas_teach))
|
||||||
|
@ -234,58 +199,53 @@ class CNN():
|
||||||
mse = 10000
|
mse = 10000
|
||||||
while rp < n_repeat and mse >= error_accuracy:
|
while rp < n_repeat and mse >= error_accuracy:
|
||||||
alle = 0
|
alle = 0
|
||||||
print('-------------进行第%d次学习--------------'%rp)
|
print('-------------Learning Time %d--------------'%rp)
|
||||||
for p in range(len(datas_train)):
|
for p in range(len(datas_train)):
|
||||||
#print('------------学习第%d个图像--------------'%p)
|
#print('------------Learning Image: %d--------------'%p)
|
||||||
data_train = np.asmatrix(datas_train[p])
|
data_train = np.asmatrix(datas_train[p])
|
||||||
data_teach = np.asarray(datas_teach[p])
|
data_teach = np.asarray(datas_teach[p])
|
||||||
data_focus1,data_conved1 = self.Convolute(data_train,self.conv1,self.w_conv1,
|
data_focus1,data_conved1 = self.convolute(data_train,self.conv1,self.w_conv1,
|
||||||
self.thre_conv1,conv_step=self.step_conv1)
|
self.thre_conv1,conv_step=self.step_conv1)
|
||||||
data_pooled1 = self.Pooling(data_conved1,self.size_pooling1)
|
data_pooled1 = self.pooling(data_conved1,self.size_pooling1)
|
||||||
shape_featuremap1 = np.shape(data_conved1)
|
shape_featuremap1 = np.shape(data_conved1)
|
||||||
'''
|
'''
|
||||||
print(' -----original shape ', np.shape(data_train))
|
print(' -----original shape ', np.shape(data_train))
|
||||||
print(' ---- after convolution ',np.shape(data_conv1))
|
print(' ---- after convolution ',np.shape(data_conv1))
|
||||||
print(' -----after pooling ',np.shape(data_pooled1))
|
print(' -----after pooling ',np.shape(data_pooled1))
|
||||||
'''
|
'''
|
||||||
data_bp_input = self.Expand(data_pooled1)
|
data_bp_input = self._expand(data_pooled1)
|
||||||
# 计算第一层输入输出
|
|
||||||
bp_out1 = data_bp_input
|
bp_out1 = data_bp_input
|
||||||
# 计算第二层输入输出
|
|
||||||
bp_net_j = np.dot(bp_out1,self.vji.T) - self.thre_bp2
|
bp_net_j = np.dot(bp_out1,self.vji.T) - self.thre_bp2
|
||||||
bp_out2 = self.sig(bp_net_j)
|
bp_out2 = self.sig(bp_net_j)
|
||||||
# 计算第三层输入输出
|
|
||||||
bp_net_k = np.dot(bp_out2 ,self.wkj.T) - self.thre_bp3
|
bp_net_k = np.dot(bp_out2 ,self.wkj.T) - self.thre_bp3
|
||||||
bp_out3 = self.sig(bp_net_k)
|
bp_out3 = self.sig(bp_net_k)
|
||||||
|
|
||||||
# 计算一般化误差
|
#--------------Model Leaning ------------------------
|
||||||
|
# calcluate error and gradient---------------
|
||||||
pd_k_all = np.multiply((data_teach - bp_out3), np.multiply(bp_out3, (1 - bp_out3)))
|
pd_k_all = np.multiply((data_teach - bp_out3), np.multiply(bp_out3, (1 - bp_out3)))
|
||||||
pd_j_all = np.multiply(np.dot(pd_k_all,self.wkj), np.multiply(bp_out2, (1 - bp_out2)))
|
pd_j_all = np.multiply(np.dot(pd_k_all,self.wkj), np.multiply(bp_out2, (1 - bp_out2)))
|
||||||
pd_i_all = np.dot(pd_j_all,self.vji)
|
pd_i_all = np.dot(pd_j_all,self.vji)
|
||||||
|
|
||||||
pd_conv1_pooled = pd_i_all / (self.size_pooling1*self.size_pooling1)
|
pd_conv1_pooled = pd_i_all / (self.size_pooling1*self.size_pooling1)
|
||||||
pd_conv1_pooled = pd_conv1_pooled.T.getA().tolist()
|
pd_conv1_pooled = pd_conv1_pooled.T.getA().tolist()
|
||||||
pd_conv1_all = self.Getpd_From_Pool(data_conved1,pd_conv1_pooled,shape_featuremap1[0],
|
pd_conv1_all = self._calculate_gradient_from_pool(data_conved1,pd_conv1_pooled,shape_featuremap1[0],
|
||||||
shape_featuremap1[1],self.size_pooling1)
|
shape_featuremap1[1],self.size_pooling1)
|
||||||
|
#weight and threshold learning process---------
|
||||||
#卷积层1的权重和阈值修正,每个卷积核的权重需要修正 12*12(map) 次
|
#convolution layer
|
||||||
#修正量为featuremap中点的偏导值 乘以 前一层图像focus, 整个权重模板一起更新
|
|
||||||
for k_conv in range(self.conv1[1]):
|
for k_conv in range(self.conv1[1]):
|
||||||
pd_conv_list = self.Expand_Mat(pd_conv1_all[k_conv])
|
pd_conv_list = self._expand_mat(pd_conv1_all[k_conv])
|
||||||
delta_w = self.rate_weight * np.dot(pd_conv_list,data_focus1)
|
delta_w = self.rate_weight * np.dot(pd_conv_list,data_focus1)
|
||||||
|
|
||||||
self.w_conv1[k_conv] = self.w_conv1[k_conv] + delta_w.reshape((self.conv1[0],self.conv1[0]))
|
self.w_conv1[k_conv] = self.w_conv1[k_conv] + delta_w.reshape((self.conv1[0],self.conv1[0]))
|
||||||
|
|
||||||
self.thre_conv1[k_conv] = self.thre_conv1[k_conv] - np.sum(pd_conv1_all[k_conv]) * self.rate_thre
|
self.thre_conv1[k_conv] = self.thre_conv1[k_conv] - np.sum(pd_conv1_all[k_conv]) * self.rate_thre
|
||||||
# 更新kj层的权重
|
#all connected layer
|
||||||
|
|
||||||
self.wkj = self.wkj + pd_k_all.T * bp_out2 * self.rate_weight
|
self.wkj = self.wkj + pd_k_all.T * bp_out2 * self.rate_weight
|
||||||
# 更新ji层的权重
|
|
||||||
self.vji = self.vji + pd_j_all.T * bp_out1 * self.rate_weight
|
self.vji = self.vji + pd_j_all.T * bp_out1 * self.rate_weight
|
||||||
# 更新阈值
|
|
||||||
self.thre_bp3 = self.thre_bp3 - pd_k_all * self.rate_thre
|
self.thre_bp3 = self.thre_bp3 - pd_k_all * self.rate_thre
|
||||||
self.thre_bp2 = self.thre_bp2 - pd_j_all * self.rate_thre
|
self.thre_bp2 = self.thre_bp2 - pd_j_all * self.rate_thre
|
||||||
# 计算总误差
|
# calculate the sum error of all single image
|
||||||
errors = np.sum(abs((data_teach - bp_out3)))
|
errors = np.sum(abs((data_teach - bp_out3)))
|
||||||
alle = alle + errors
|
alle = alle + errors
|
||||||
#print(' ----Teach ',data_teach)
|
#print(' ----Teach ',data_teach)
|
||||||
|
@ -307,24 +267,21 @@ class CNN():
|
||||||
draw_error()
|
draw_error()
|
||||||
return mse
|
return mse
|
||||||
|
|
||||||
def produce(self,datas_test):
|
def predict(self,datas_test):
|
||||||
#对验证和测试数据集进行输出
|
#model predict
|
||||||
produce_out = []
|
produce_out = []
|
||||||
print('-------------------Start Testing-------------------------')
|
print('-------------------Start Testing-------------------------')
|
||||||
print(' - - Shape: Test_Data ',np.shape(datas_test))
|
print(' - - Shape: Test_Data ',np.shape(datas_test))
|
||||||
for p in range(len(datas_test)):
|
for p in range(len(datas_test)):
|
||||||
print('--------测试第%d个图像----------' % p)
|
|
||||||
data_test = np.asmatrix(datas_test[p])
|
data_test = np.asmatrix(datas_test[p])
|
||||||
data_focus1, data_conved1 = self.Convolute(data_test, self.conv1, self.w_conv1,
|
data_focus1, data_conved1 = self.convolute(data_test, self.conv1, self.w_conv1,
|
||||||
self.thre_conv1, conv_step=self.step_conv1)
|
self.thre_conv1, conv_step=self.step_conv1)
|
||||||
data_pooled1 = self.Pooling(data_conved1, self.size_pooling1)
|
data_pooled1 = self.pooling(data_conved1, self.size_pooling1)
|
||||||
data_bp_input = self.Expand(data_pooled1)
|
data_bp_input = self._expand(data_pooled1)
|
||||||
# 计算第一层输入输出
|
|
||||||
bp_out1 = data_bp_input
|
bp_out1 = data_bp_input
|
||||||
# 计算第二层输入输出
|
|
||||||
bp_net_j = bp_out1 * self.vji.T - self.thre_bp2
|
bp_net_j = bp_out1 * self.vji.T - self.thre_bp2
|
||||||
bp_out2 = self.sig(bp_net_j)
|
bp_out2 = self.sig(bp_net_j)
|
||||||
# 计算第三层输入输出
|
|
||||||
bp_net_k = bp_out2 * self.wkj.T - self.thre_bp3
|
bp_net_k = bp_out2 * self.wkj.T - self.thre_bp3
|
||||||
bp_out3 = self.sig(bp_net_k)
|
bp_out3 = self.sig(bp_net_k)
|
||||||
produce_out.extend(bp_out3.getA().tolist())
|
produce_out.extend(bp_out3.getA().tolist())
|
||||||
|
@ -332,12 +289,17 @@ class CNN():
|
||||||
return np.asarray(res)
|
return np.asarray(res)
|
||||||
|
|
||||||
def convolution(self,data):
|
def convolution(self,data):
|
||||||
#返回卷积和池化后的数据,用于查看图像
|
#return the data of image after convoluting process so we can check it out
|
||||||
data_test = np.asmatrix(data)
|
data_test = np.asmatrix(data)
|
||||||
data_focus1, data_conved1 = self.Convolute(data_test, self.conv1, self.w_conv1,
|
data_focus1, data_conved1 = self.convolute(data_test, self.conv1, self.w_conv1,
|
||||||
self.thre_conv1, conv_step=self.step_conv1)
|
self.thre_conv1, conv_step=self.step_conv1)
|
||||||
data_pooled1 = self.Pooling(data_conved1, self.size_pooling1)
|
data_pooled1 = self.pooling(data_conved1, self.size_pooling1)
|
||||||
|
|
||||||
return data_conved1,data_pooled1
|
return data_conved1,data_pooled1
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
pass
|
||||||
|
'''
|
||||||
|
I will put the example on other file
|
||||||
|
'''
|
Loading…
Reference in New Issue
Block a user