mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-19 00:37:02 +00:00
ridge regression
This commit is contained in:
parent
6fc134d96c
commit
7484cda516
|
@ -9,12 +9,8 @@ class RidgeRegression:
|
||||||
self.num_iterations:int = num_iterations
|
self.num_iterations:int = num_iterations
|
||||||
self.theta:np.ndarray = None
|
self.theta:np.ndarray = None
|
||||||
|
|
||||||
<<<<<<< HEAD
|
|
||||||
|
|
||||||
def feature_scaling(self, X:np.ndarray) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
|
def feature_scaling(self, X:np.ndarray) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
|
||||||
=======
|
|
||||||
def feature_scaling(self, X):
|
|
||||||
>>>>>>> d4fc2bf852ec4a023380f4ef367edefa88fd6881
|
|
||||||
mean = np.mean(X, axis=0)
|
mean = np.mean(X, axis=0)
|
||||||
std = np.std(X, axis=0)
|
std = np.std(X, axis=0)
|
||||||
|
|
||||||
|
@ -43,13 +39,8 @@ class RidgeRegression:
|
||||||
X_scaled, _, _ = self.feature_scaling(X)
|
X_scaled, _, _ = self.feature_scaling(X)
|
||||||
return X_scaled.dot(self.theta)
|
return X_scaled.dot(self.theta)
|
||||||
|
|
||||||
<<<<<<< HEAD
|
|
||||||
def compute_cost(self, X:np.ndarray, y:np.ndarray) -> float:
|
def compute_cost(self, X:np.ndarray, y:np.ndarray) -> float:
|
||||||
X_scaled, _, _ = self.feature_scaling(X)
|
X_scaled, _, _ = self.feature_scaling(X)
|
||||||
=======
|
|
||||||
def compute_cost(self, X, y):
|
|
||||||
X_scaled, _, _ = self.feature_scaling(X)
|
|
||||||
>>>>>>> d4fc2bf852ec4a023380f4ef367edefa88fd6881
|
|
||||||
m = len(y)
|
m = len(y)
|
||||||
|
|
||||||
predictions = X_scaled.dot(self.theta)
|
predictions = X_scaled.dot(self.theta)
|
||||||
|
@ -69,13 +60,8 @@ if __name__ == "__main__":
|
||||||
y = df["ADR"].values
|
y = df["ADR"].values
|
||||||
y = (y - np.mean(y)) / np.std(y)
|
y = (y - np.mean(y)) / np.std(y)
|
||||||
|
|
||||||
<<<<<<< HEAD
|
|
||||||
# added bias term to the feature matrix
|
# added bias term to the feature matrix
|
||||||
X = np.c_[np.ones(X.shape[0]), X]
|
X = np.c_[np.ones(X.shape[0]), X]
|
||||||
=======
|
|
||||||
# Add bias term (intercept) to the feature matrix
|
|
||||||
X = np.c_[np.ones(X.shape[0]), X]
|
|
||||||
>>>>>>> d4fc2bf852ec4a023380f4ef367edefa88fd6881
|
|
||||||
|
|
||||||
# initialize and train the ridge regression model
|
# initialize and train the ridge regression model
|
||||||
model = RidgeRegression(alpha=0.01, regularization_param=0.1, num_iterations=1000)
|
model = RidgeRegression(alpha=0.01, regularization_param=0.1, num_iterations=1000)
|
||||||
|
|
Loading…
Reference in New Issue
Block a user