mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 08:17:01 +00:00
Intensity_based_Segmentation (#12491)
* Add files via upload * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update intensity-based_segmentation.py * Update and rename intensity-based_segmentation.py to intensity_based_segmentation.py * Update intensity_based_segmentation.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Apply suggestions from code review * [0, 1, 1]], dtype=int32) --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Christian Clauss <cclauss@me.com>
This commit is contained in:
parent
f24ddba5b2
commit
77425364c8
62
computer_vision/intensity_based_segmentation.py
Normal file
62
computer_vision/intensity_based_segmentation.py
Normal file
|
@ -0,0 +1,62 @@
|
|||
# Source: "https://www.ijcse.com/docs/IJCSE11-02-03-117.pdf"
|
||||
|
||||
# Importing necessary libraries
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
|
||||
def segment_image(image: np.ndarray, thresholds: list[int]) -> np.ndarray:
|
||||
"""
|
||||
Performs image segmentation based on intensity thresholds.
|
||||
|
||||
Args:
|
||||
image: Input grayscale image as a 2D array.
|
||||
thresholds: Intensity thresholds to define segments.
|
||||
|
||||
Returns:
|
||||
A labeled 2D array where each region corresponds to a threshold range.
|
||||
|
||||
Example:
|
||||
>>> img = np.array([[80, 120, 180], [40, 90, 150], [20, 60, 100]])
|
||||
>>> segment_image(img, [50, 100, 150])
|
||||
array([[1, 2, 3],
|
||||
[0, 1, 2],
|
||||
[0, 1, 1]], dtype=int32)
|
||||
"""
|
||||
# Initialize segmented array with zeros
|
||||
segmented = np.zeros_like(image, dtype=np.int32)
|
||||
|
||||
# Assign labels based on thresholds
|
||||
for i, threshold in enumerate(thresholds):
|
||||
segmented[image > threshold] = i + 1
|
||||
|
||||
return segmented
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Load the image
|
||||
image_path = "path_to_image" # Replace with your image path
|
||||
original_image = Image.open(image_path).convert("L")
|
||||
image_array = np.array(original_image)
|
||||
|
||||
# Define thresholds
|
||||
thresholds = [50, 100, 150, 200]
|
||||
|
||||
# Perform segmentation
|
||||
segmented_image = segment_image(image_array, thresholds)
|
||||
|
||||
# Display the results
|
||||
plt.figure(figsize=(10, 5))
|
||||
|
||||
plt.subplot(1, 2, 1)
|
||||
plt.title("Original Image")
|
||||
plt.imshow(image_array, cmap="gray")
|
||||
plt.axis("off")
|
||||
|
||||
plt.subplot(1, 2, 2)
|
||||
plt.title("Segmented Image")
|
||||
plt.imshow(segmented_image, cmap="tab20")
|
||||
plt.axis("off")
|
||||
|
||||
plt.show()
|
Loading…
Reference in New Issue
Block a user