Fix sphinx/build_docs warnings for dynamic_programming (#12484)

* Fix sphinx/build_docs warnings for dynamic_programming

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Fix

* Fix

* Fix

* Fix

* Fix

* Fix

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Maxim Smolskiy 2024-12-30 14:52:03 +03:00 committed by GitHub
parent 493a7c153c
commit 7fa9b4bf1b
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
13 changed files with 294 additions and 285 deletions

View File

@ -9,8 +9,9 @@ from __future__ import annotations
def all_construct(target: str, word_bank: list[str] | None = None) -> list[list[str]]: def all_construct(target: str, word_bank: list[str] | None = None) -> list[list[str]]:
""" """
returns the list containing all the possible returns the list containing all the possible
combinations a string(target) can be constructed from combinations a string(`target`) can be constructed from
the given list of substrings(word_bank) the given list of substrings(`word_bank`)
>>> all_construct("hello", ["he", "l", "o"]) >>> all_construct("hello", ["he", "l", "o"])
[['he', 'l', 'l', 'o']] [['he', 'l', 'l', 'o']]
>>> all_construct("purple",["purp","p","ur","le","purpl"]) >>> all_construct("purple",["purp","p","ur","le","purpl"])

View File

@ -7,16 +7,17 @@ the sum of chosen elements is equal to the target number tar.
Example Example
Input: Input:
N = 3 * N = 3
target = 5 * target = 5
array = [1, 2, 5] * array = [1, 2, 5]
Output: Output:
9 9
Approach: Approach:
The basic idea is to go over recursively to find the way such that the sum The basic idea is to go over recursively to find the way such that the sum
of chosen elements is tar. For every element, we have two choices of chosen elements is `target`. For every element, we have two choices
1. Include the element in our set of chosen elements. 1. Include the element in our set of chosen elements.
2. Don't include the element in our set of chosen elements. 2. Don't include the element in our set of chosen elements.
""" """

View File

@ -3,11 +3,12 @@
def fizz_buzz(number: int, iterations: int) -> str: def fizz_buzz(number: int, iterations: int) -> str:
""" """
Plays FizzBuzz. | Plays FizzBuzz.
Prints Fizz if number is a multiple of 3. | Prints Fizz if number is a multiple of ``3``.
Prints Buzz if its a multiple of 5. | Prints Buzz if its a multiple of ``5``.
Prints FizzBuzz if its a multiple of both 3 and 5 or 15. | Prints FizzBuzz if its a multiple of both ``3`` and ``5`` or ``15``.
Else Prints The Number Itself. | Else Prints The Number Itself.
>>> fizz_buzz(1,7) >>> fizz_buzz(1,7)
'1 2 Fizz 4 Buzz Fizz 7 ' '1 2 Fizz 4 Buzz Fizz 7 '
>>> fizz_buzz(1,0) >>> fizz_buzz(1,0)

View File

@ -11,7 +11,7 @@ def mf_knapsack(i, wt, val, j):
""" """
This code involves the concept of memory functions. Here we solve the subproblems This code involves the concept of memory functions. Here we solve the subproblems
which are needed unlike the below example which are needed unlike the below example
F is a 2D array with -1s filled up F is a 2D array with ``-1`` s filled up
""" """
global f # a global dp table for knapsack global f # a global dp table for knapsack
if f[i][j] < 0: if f[i][j] < 0:
@ -45,22 +45,24 @@ def knapsack_with_example_solution(w: int, wt: list, val: list):
the several possible optimal subsets. the several possible optimal subsets.
Parameters Parameters
--------- ----------
W: int, the total maximum weight for the given knapsack problem. * `w`: int, the total maximum weight for the given knapsack problem.
wt: list, the vector of weights for all items where wt[i] is the weight * `wt`: list, the vector of weights for all items where ``wt[i]`` is the weight
of the i-th item. of the ``i``-th item.
val: list, the vector of values for all items where val[i] is the value * `val`: list, the vector of values for all items where ``val[i]`` is the value
of the i-th item of the ``i``-th item
Returns Returns
------- -------
optimal_val: float, the optimal value for the given knapsack problem
example_optional_set: set, the indices of one of the optimal subsets * `optimal_val`: float, the optimal value for the given knapsack problem
* `example_optional_set`: set, the indices of one of the optimal subsets
which gave rise to the optimal value. which gave rise to the optimal value.
Examples Examples
------- --------
>>> knapsack_with_example_solution(10, [1, 3, 5, 2], [10, 20, 100, 22]) >>> knapsack_with_example_solution(10, [1, 3, 5, 2], [10, 20, 100, 22])
(142, {2, 3, 4}) (142, {2, 3, 4})
>>> knapsack_with_example_solution(6, [4, 3, 2, 3], [3, 2, 4, 4]) >>> knapsack_with_example_solution(6, [4, 3, 2, 3], [3, 2, 4, 4])
@ -104,19 +106,19 @@ def _construct_solution(dp: list, wt: list, i: int, j: int, optimal_set: set):
a filled DP table and the vector of weights a filled DP table and the vector of weights
Parameters Parameters
--------- ----------
dp: list of list, the table of a solved integer weight dynamic programming problem * `dp`: list of list, the table of a solved integer weight dynamic programming
problem
wt: list or tuple, the vector of weights of the items * `wt`: list or tuple, the vector of weights of the items
i: int, the index of the item under consideration * `i`: int, the index of the item under consideration
j: int, the current possible maximum weight * `j`: int, the current possible maximum weight
optimal_set: set, the optimal subset so far. This gets modified by the function. * `optimal_set`: set, the optimal subset so far. This gets modified by the function.
Returns Returns
------- -------
None
``None``
""" """
# for the current item i at a maximum weight j to be part of an optimal subset, # for the current item i at a maximum weight j to be part of an optimal subset,
# the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # the optimal value at (i, j) must be greater than the optimal value at (i-1, j).

View File

@ -1,8 +1,11 @@
""" """
Longest Common Substring Problem Statement: Given two sequences, find the Longest Common Substring Problem Statement:
Given two sequences, find the
longest common substring present in both of them. A substring is longest common substring present in both of them. A substring is
necessarily continuous. necessarily continuous.
Example: "abcdef" and "xabded" have two longest common substrings, "ab" or "de".
Example:
``abcdef`` and ``xabded`` have two longest common substrings, ``ab`` or ``de``.
Therefore, algorithm should return any one of them. Therefore, algorithm should return any one of them.
""" """
@ -10,6 +13,7 @@ Therefore, algorithm should return any one of them.
def longest_common_substring(text1: str, text2: str) -> str: def longest_common_substring(text1: str, text2: str) -> str:
""" """
Finds the longest common substring between two strings. Finds the longest common substring between two strings.
>>> longest_common_substring("", "") >>> longest_common_substring("", "")
'' ''
>>> longest_common_substring("a","") >>> longest_common_substring("a","")

View File

@ -7,8 +7,10 @@ increasing subsequence of a given sequence.
The problem is: The problem is:
Given an array, to find the longest and increasing sub-array in that given array and Given an array, to find the longest and increasing sub-array in that given array and
return it. return it.
Example: [10, 22, 9, 33, 21, 50, 41, 60, 80] as input will return
[10, 22, 33, 41, 60, 80] as output Example:
``[10, 22, 9, 33, 21, 50, 41, 60, 80]`` as input will return
``[10, 22, 33, 41, 60, 80]`` as output
""" """
from __future__ import annotations from __future__ import annotations
@ -17,6 +19,7 @@ from __future__ import annotations
def longest_subsequence(array: list[int]) -> list[int]: # This function is recursive def longest_subsequence(array: list[int]) -> list[int]: # This function is recursive
""" """
Some examples Some examples
>>> longest_subsequence([10, 22, 9, 33, 21, 50, 41, 60, 80]) >>> longest_subsequence([10, 22, 9, 33, 21, 50, 41, 60, 80])
[10, 22, 33, 41, 60, 80] [10, 22, 33, 41, 60, 80]
>>> longest_subsequence([4, 8, 7, 5, 1, 12, 2, 3, 9]) >>> longest_subsequence([4, 8, 7, 5, 1, 12, 2, 3, 9])

View File

@ -1,8 +1,10 @@
""" """
Find the minimum number of multiplications needed to multiply chain of matrices. | Find the minimum number of multiplications needed to multiply chain of matrices.
Reference: https://www.geeksforgeeks.org/matrix-chain-multiplication-dp-8/ | Reference: https://www.geeksforgeeks.org/matrix-chain-multiplication-dp-8/
The algorithm has interesting real-world applications. Example: The algorithm has interesting real-world applications.
Example:
1. Image transformations in Computer Graphics as images are composed of matrix. 1. Image transformations in Computer Graphics as images are composed of matrix.
2. Solve complex polynomial equations in the field of algebra using least processing 2. Solve complex polynomial equations in the field of algebra using least processing
power. power.
@ -11,32 +13,36 @@ The algorithm has interesting real-world applications. Example:
4. Self-driving car navigation can be made more accurate as matrix multiplication can 4. Self-driving car navigation can be made more accurate as matrix multiplication can
accurately determine position and orientation of obstacles in short time. accurately determine position and orientation of obstacles in short time.
Python doctests can be run with the following command: Python doctests can be run with the following command::
python -m doctest -v matrix_chain_multiply.py python -m doctest -v matrix_chain_multiply.py
Given a sequence arr[] that represents chain of 2D matrices such that the dimension of Given a sequence ``arr[]`` that represents chain of 2D matrices such that the dimension
the ith matrix is arr[i-1]*arr[i]. of the ``i`` th matrix is ``arr[i-1]*arr[i]``.
So suppose arr = [40, 20, 30, 10, 30] means we have 4 matrices of dimensions So suppose ``arr = [40, 20, 30, 10, 30]`` means we have ``4`` matrices of dimensions
40*20, 20*30, 30*10 and 10*30. ``40*20``, ``20*30``, ``30*10`` and ``10*30``.
matrix_chain_multiply() returns an integer denoting minimum number of multiplications to ``matrix_chain_multiply()`` returns an integer denoting minimum number of
multiply the chain. multiplications to multiply the chain.
We do not need to perform actual multiplication here. We do not need to perform actual multiplication here.
We only need to decide the order in which to perform the multiplication. We only need to decide the order in which to perform the multiplication.
Hints: Hints:
1. Number of multiplications (ie cost) to multiply 2 matrices 1. Number of multiplications (ie cost) to multiply ``2`` matrices
of size m*p and p*n is m*p*n. of size ``m*p`` and ``p*n`` is ``m*p*n``.
2. Cost of matrix multiplication is associative ie (M1*M2)*M3 != M1*(M2*M3) 2. Cost of matrix multiplication is not associative ie ``(M1*M2)*M3 != M1*(M2*M3)``
3. Matrix multiplication is not commutative. So, M1*M2 does not mean M2*M1 can be done. 3. Matrix multiplication is not commutative. So, ``M1*M2`` does not mean ``M2*M1``
can be done.
4. To determine the required order, we can try different combinations. 4. To determine the required order, we can try different combinations.
So, this problem has overlapping sub-problems and can be solved using recursion. So, this problem has overlapping sub-problems and can be solved using recursion.
We use Dynamic Programming for optimal time complexity. We use Dynamic Programming for optimal time complexity.
Example input: Example input:
arr = [40, 20, 30, 10, 30] ``arr = [40, 20, 30, 10, 30]``
output: 26000 output:
``26000``
""" """
from collections.abc import Iterator from collections.abc import Iterator
@ -50,12 +56,13 @@ def matrix_chain_multiply(arr: list[int]) -> int:
Find the minimum number of multiplcations required to multiply the chain of matrices Find the minimum number of multiplcations required to multiply the chain of matrices
Args: Args:
arr: The input array of integers. `arr`: The input array of integers.
Returns: Returns:
Minimum number of multiplications needed to multiply the chain Minimum number of multiplications needed to multiply the chain
Examples: Examples:
>>> matrix_chain_multiply([1, 2, 3, 4, 3]) >>> matrix_chain_multiply([1, 2, 3, 4, 3])
30 30
>>> matrix_chain_multiply([10]) >>> matrix_chain_multiply([10])
@ -66,8 +73,7 @@ def matrix_chain_multiply(arr: list[int]) -> int:
722 722
>>> matrix_chain_multiply(list(range(1, 100))) >>> matrix_chain_multiply(list(range(1, 100)))
323398 323398
>>> # matrix_chain_multiply(list(range(1, 251)))
# >>> matrix_chain_multiply(list(range(1, 251)))
# 2626798 # 2626798
""" """
if len(arr) < 2: if len(arr) < 2:
@ -93,8 +99,10 @@ def matrix_chain_multiply(arr: list[int]) -> int:
def matrix_chain_order(dims: list[int]) -> int: def matrix_chain_order(dims: list[int]) -> int:
""" """
Source: https://en.wikipedia.org/wiki/Matrix_chain_multiplication Source: https://en.wikipedia.org/wiki/Matrix_chain_multiplication
The dynamic programming solution is faster than cached the recursive solution and The dynamic programming solution is faster than cached the recursive solution and
can handle larger inputs. can handle larger inputs.
>>> matrix_chain_order([1, 2, 3, 4, 3]) >>> matrix_chain_order([1, 2, 3, 4, 3])
30 30
>>> matrix_chain_order([10]) >>> matrix_chain_order([10])
@ -105,8 +113,7 @@ def matrix_chain_order(dims: list[int]) -> int:
722 722
>>> matrix_chain_order(list(range(1, 100))) >>> matrix_chain_order(list(range(1, 100)))
323398 323398
>>> # matrix_chain_order(list(range(1, 251))) # Max before RecursionError is raised
# >>> matrix_chain_order(list(range(1, 251))) # Max before RecursionError is raised
# 2626798 # 2626798
""" """

View File

@ -1,9 +1,10 @@
def max_product_subarray(numbers: list[int]) -> int: def max_product_subarray(numbers: list[int]) -> int:
""" """
Returns the maximum product that can be obtained by multiplying a Returns the maximum product that can be obtained by multiplying a
contiguous subarray of the given integer list `nums`. contiguous subarray of the given integer list `numbers`.
Example: Example:
>>> max_product_subarray([2, 3, -2, 4]) >>> max_product_subarray([2, 3, -2, 4])
6 6
>>> max_product_subarray((-2, 0, -1)) >>> max_product_subarray((-2, 0, -1))

View File

@ -5,6 +5,7 @@ import sys
def minimum_squares_to_represent_a_number(number: int) -> int: def minimum_squares_to_represent_a_number(number: int) -> int:
""" """
Count the number of minimum squares to represent a number Count the number of minimum squares to represent a number
>>> minimum_squares_to_represent_a_number(25) >>> minimum_squares_to_represent_a_number(25)
1 1
>>> minimum_squares_to_represent_a_number(37) >>> minimum_squares_to_represent_a_number(37)

View File

@ -1,23 +1,25 @@
""" """
Regex matching check if a text matches pattern or not. Regex matching check if a text matches pattern or not.
Pattern: Pattern:
'.' Matches any single character.
'*' Matches zero or more of the preceding element. 1. ``.`` Matches any single character.
2. ``*`` Matches zero or more of the preceding element.
More info: More info:
https://medium.com/trick-the-interviwer/regular-expression-matching-9972eb74c03 https://medium.com/trick-the-interviwer/regular-expression-matching-9972eb74c03
""" """
def recursive_match(text: str, pattern: str) -> bool: def recursive_match(text: str, pattern: str) -> bool:
""" r"""
Recursive matching algorithm. Recursive matching algorithm.
Time complexity: O(2 ^ (|text| + |pattern|)) | Time complexity: O(2^(\|text\| + \|pattern\|))
Space complexity: Recursion depth is O(|text| + |pattern|). | Space complexity: Recursion depth is O(\|text\| + \|pattern\|).
:param text: Text to match. :param text: Text to match.
:param pattern: Pattern to match. :param pattern: Pattern to match.
:return: True if text matches pattern, False otherwise. :return: ``True`` if `text` matches `pattern`, ``False`` otherwise.
>>> recursive_match('abc', 'a.c') >>> recursive_match('abc', 'a.c')
True True
@ -48,15 +50,15 @@ def recursive_match(text: str, pattern: str) -> bool:
def dp_match(text: str, pattern: str) -> bool: def dp_match(text: str, pattern: str) -> bool:
""" r"""
Dynamic programming matching algorithm. Dynamic programming matching algorithm.
Time complexity: O(|text| * |pattern|) | Time complexity: O(\|text\| * \|pattern\|)
Space complexity: O(|text| * |pattern|) | Space complexity: O(\|text\| * \|pattern\|)
:param text: Text to match. :param text: Text to match.
:param pattern: Pattern to match. :param pattern: Pattern to match.
:return: True if text matches pattern, False otherwise. :return: ``True`` if `text` matches `pattern`, ``False`` otherwise.
>>> dp_match('abc', 'a.c') >>> dp_match('abc', 'a.c')
True True

View File

@ -20,18 +20,21 @@ def naive_cut_rod_recursive(n: int, prices: list):
Runtime: O(2^n) Runtime: O(2^n)
Arguments Arguments
------- ---------
n: int, the length of the rod
prices: list, the prices for each piece of rod. ``p[i-i]`` is the * `n`: int, the length of the rod
* `prices`: list, the prices for each piece of rod. ``p[i-i]`` is the
price for a rod of length ``i`` price for a rod of length ``i``
Returns Returns
------- -------
The maximum revenue obtainable for a rod of length n given the list of prices
The maximum revenue obtainable for a rod of length `n` given the list of prices
for each piece. for each piece.
Examples Examples
-------- --------
>>> naive_cut_rod_recursive(4, [1, 5, 8, 9]) >>> naive_cut_rod_recursive(4, [1, 5, 8, 9])
10 10
>>> naive_cut_rod_recursive(10, [1, 5, 8, 9, 10, 17, 17, 20, 24, 30]) >>> naive_cut_rod_recursive(10, [1, 5, 8, 9, 10, 17, 17, 20, 24, 30])
@ -54,28 +57,30 @@ def top_down_cut_rod(n: int, prices: list):
""" """
Constructs a top-down dynamic programming solution for the rod-cutting Constructs a top-down dynamic programming solution for the rod-cutting
problem via memoization. This function serves as a wrapper for problem via memoization. This function serves as a wrapper for
_top_down_cut_rod_recursive ``_top_down_cut_rod_recursive``
Runtime: O(n^2) Runtime: O(n^2)
Arguments Arguments
-------- ---------
n: int, the length of the rod
prices: list, the prices for each piece of rod. ``p[i-i]`` is the * `n`: int, the length of the rod
* `prices`: list, the prices for each piece of rod. ``p[i-i]`` is the
price for a rod of length ``i`` price for a rod of length ``i``
Note .. note::
---- For convenience and because Python's lists using ``0``-indexing, ``length(max_rev)
For convenience and because Python's lists using 0-indexing, length(max_rev) = = n + 1``, to accommodate for the revenue obtainable from a rod of length ``0``.
n + 1, to accommodate for the revenue obtainable from a rod of length 0.
Returns Returns
------- -------
The maximum revenue obtainable for a rod of length n given the list of prices
The maximum revenue obtainable for a rod of length `n` given the list of prices
for each piece. for each piece.
Examples Examples
------- --------
>>> top_down_cut_rod(4, [1, 5, 8, 9]) >>> top_down_cut_rod(4, [1, 5, 8, 9])
10 10
>>> top_down_cut_rod(10, [1, 5, 8, 9, 10, 17, 17, 20, 24, 30]) >>> top_down_cut_rod(10, [1, 5, 8, 9, 10, 17, 17, 20, 24, 30])
@ -94,16 +99,18 @@ def _top_down_cut_rod_recursive(n: int, prices: list, max_rev: list):
Runtime: O(n^2) Runtime: O(n^2)
Arguments Arguments
-------- ---------
n: int, the length of the rod
prices: list, the prices for each piece of rod. ``p[i-i]`` is the * `n`: int, the length of the rod
* `prices`: list, the prices for each piece of rod. ``p[i-i]`` is the
price for a rod of length ``i`` price for a rod of length ``i``
max_rev: list, the computed maximum revenue for a piece of rod. * `max_rev`: list, the computed maximum revenue for a piece of rod.
``max_rev[i]`` is the maximum revenue obtainable for a rod of length ``i`` ``max_rev[i]`` is the maximum revenue obtainable for a rod of length ``i``
Returns Returns
------- -------
The maximum revenue obtainable for a rod of length n given the list of prices
The maximum revenue obtainable for a rod of length `n` given the list of prices
for each piece. for each piece.
""" """
if max_rev[n] >= 0: if max_rev[n] >= 0:
@ -130,18 +137,21 @@ def bottom_up_cut_rod(n: int, prices: list):
Runtime: O(n^2) Runtime: O(n^2)
Arguments Arguments
---------- ---------
n: int, the maximum length of the rod.
prices: list, the prices for each piece of rod. ``p[i-i]`` is the * `n`: int, the maximum length of the rod.
* `prices`: list, the prices for each piece of rod. ``p[i-i]`` is the
price for a rod of length ``i`` price for a rod of length ``i``
Returns Returns
------- -------
The maximum revenue obtainable from cutting a rod of length n given
The maximum revenue obtainable from cutting a rod of length `n` given
the prices for each piece of rod p. the prices for each piece of rod p.
Examples Examples
------- --------
>>> bottom_up_cut_rod(4, [1, 5, 8, 9]) >>> bottom_up_cut_rod(4, [1, 5, 8, 9])
10 10
>>> bottom_up_cut_rod(10, [1, 5, 8, 9, 10, 17, 17, 20, 24, 30]) >>> bottom_up_cut_rod(10, [1, 5, 8, 9, 10, 17, 17, 20, 24, 30])
@ -168,12 +178,11 @@ def _enforce_args(n: int, prices: list):
""" """
Basic checks on the arguments to the rod-cutting algorithms Basic checks on the arguments to the rod-cutting algorithms
n: int, the length of the rod * `n`: int, the length of the rod
prices: list, the price list for each piece of rod. * `prices`: list, the price list for each piece of rod.
Throws ValueError: Throws ``ValueError``:
if `n` is negative or there are fewer items in the price list than the length of
if n is negative or there are fewer items in the price list than the length of
the rod the rod
""" """
if n < 0: if n < 0:

View File

@ -1,11 +1,14 @@
def subset_combinations(elements: list[int], n: int) -> list: def subset_combinations(elements: list[int], n: int) -> list:
""" """
Compute n-element combinations from a given list using dynamic programming. Compute n-element combinations from a given list using dynamic programming.
Args: Args:
elements: The list of elements from which combinations will be generated. * `elements`: The list of elements from which combinations will be generated.
n: The number of elements in each combination. * `n`: The number of elements in each combination.
Returns: Returns:
A list of tuples, each representing a combination of n elements. A list of tuples, each representing a combination of `n` elements.
>>> subset_combinations(elements=[10, 20, 30, 40], n=2) >>> subset_combinations(elements=[10, 20, 30, 40], n=2)
[(10, 20), (10, 30), (10, 40), (20, 30), (20, 40), (30, 40)] [(10, 20), (10, 30), (10, 40), (20, 30), (20, 40), (30, 40)]
>>> subset_combinations(elements=[1, 2, 3], n=1) >>> subset_combinations(elements=[1, 2, 3], n=1)

View File

@ -11,9 +11,11 @@ def viterbi(
""" """
Viterbi Algorithm, to find the most likely path of Viterbi Algorithm, to find the most likely path of
states from the start and the expected output. states from the start and the expected output.
https://en.wikipedia.org/wiki/Viterbi_algorithm https://en.wikipedia.org/wiki/Viterbi_algorithm
sdafads
Wikipedia example Wikipedia example
>>> observations = ["normal", "cold", "dizzy"] >>> observations = ["normal", "cold", "dizzy"]
>>> states = ["Healthy", "Fever"] >>> states = ["Healthy", "Fever"]
>>> start_p = {"Healthy": 0.6, "Fever": 0.4} >>> start_p = {"Healthy": 0.6, "Fever": 0.4}
@ -27,97 +29,78 @@ def viterbi(
... } ... }
>>> viterbi(observations, states, start_p, trans_p, emit_p) >>> viterbi(observations, states, start_p, trans_p, emit_p)
['Healthy', 'Healthy', 'Fever'] ['Healthy', 'Healthy', 'Fever']
>>> viterbi((), states, start_p, trans_p, emit_p) >>> viterbi((), states, start_p, trans_p, emit_p)
Traceback (most recent call last): Traceback (most recent call last):
... ...
ValueError: There's an empty parameter ValueError: There's an empty parameter
>>> viterbi(observations, (), start_p, trans_p, emit_p) >>> viterbi(observations, (), start_p, trans_p, emit_p)
Traceback (most recent call last): Traceback (most recent call last):
... ...
ValueError: There's an empty parameter ValueError: There's an empty parameter
>>> viterbi(observations, states, {}, trans_p, emit_p) >>> viterbi(observations, states, {}, trans_p, emit_p)
Traceback (most recent call last): Traceback (most recent call last):
... ...
ValueError: There's an empty parameter ValueError: There's an empty parameter
>>> viterbi(observations, states, start_p, {}, emit_p) >>> viterbi(observations, states, start_p, {}, emit_p)
Traceback (most recent call last): Traceback (most recent call last):
... ...
ValueError: There's an empty parameter ValueError: There's an empty parameter
>>> viterbi(observations, states, start_p, trans_p, {}) >>> viterbi(observations, states, start_p, trans_p, {})
Traceback (most recent call last): Traceback (most recent call last):
... ...
ValueError: There's an empty parameter ValueError: There's an empty parameter
>>> viterbi("invalid", states, start_p, trans_p, emit_p) >>> viterbi("invalid", states, start_p, trans_p, emit_p)
Traceback (most recent call last): Traceback (most recent call last):
... ...
ValueError: observations_space must be a list ValueError: observations_space must be a list
>>> viterbi(["valid", 123], states, start_p, trans_p, emit_p) >>> viterbi(["valid", 123], states, start_p, trans_p, emit_p)
Traceback (most recent call last): Traceback (most recent call last):
... ...
ValueError: observations_space must be a list of strings ValueError: observations_space must be a list of strings
>>> viterbi(observations, "invalid", start_p, trans_p, emit_p) >>> viterbi(observations, "invalid", start_p, trans_p, emit_p)
Traceback (most recent call last): Traceback (most recent call last):
... ...
ValueError: states_space must be a list ValueError: states_space must be a list
>>> viterbi(observations, ["valid", 123], start_p, trans_p, emit_p) >>> viterbi(observations, ["valid", 123], start_p, trans_p, emit_p)
Traceback (most recent call last): Traceback (most recent call last):
... ...
ValueError: states_space must be a list of strings ValueError: states_space must be a list of strings
>>> viterbi(observations, states, "invalid", trans_p, emit_p) >>> viterbi(observations, states, "invalid", trans_p, emit_p)
Traceback (most recent call last): Traceback (most recent call last):
... ...
ValueError: initial_probabilities must be a dict ValueError: initial_probabilities must be a dict
>>> viterbi(observations, states, {2:2}, trans_p, emit_p) >>> viterbi(observations, states, {2:2}, trans_p, emit_p)
Traceback (most recent call last): Traceback (most recent call last):
... ...
ValueError: initial_probabilities all keys must be strings ValueError: initial_probabilities all keys must be strings
>>> viterbi(observations, states, {"a":2}, trans_p, emit_p) >>> viterbi(observations, states, {"a":2}, trans_p, emit_p)
Traceback (most recent call last): Traceback (most recent call last):
... ...
ValueError: initial_probabilities all values must be float ValueError: initial_probabilities all values must be float
>>> viterbi(observations, states, start_p, "invalid", emit_p) >>> viterbi(observations, states, start_p, "invalid", emit_p)
Traceback (most recent call last): Traceback (most recent call last):
... ...
ValueError: transition_probabilities must be a dict ValueError: transition_probabilities must be a dict
>>> viterbi(observations, states, start_p, {"a":2}, emit_p) >>> viterbi(observations, states, start_p, {"a":2}, emit_p)
Traceback (most recent call last): Traceback (most recent call last):
... ...
ValueError: transition_probabilities all values must be dict ValueError: transition_probabilities all values must be dict
>>> viterbi(observations, states, start_p, {2:{2:2}}, emit_p) >>> viterbi(observations, states, start_p, {2:{2:2}}, emit_p)
Traceback (most recent call last): Traceback (most recent call last):
... ...
ValueError: transition_probabilities all keys must be strings ValueError: transition_probabilities all keys must be strings
>>> viterbi(observations, states, start_p, {"a":{2:2}}, emit_p) >>> viterbi(observations, states, start_p, {"a":{2:2}}, emit_p)
Traceback (most recent call last): Traceback (most recent call last):
... ...
ValueError: transition_probabilities all keys must be strings ValueError: transition_probabilities all keys must be strings
>>> viterbi(observations, states, start_p, {"a":{"b":2}}, emit_p) >>> viterbi(observations, states, start_p, {"a":{"b":2}}, emit_p)
Traceback (most recent call last): Traceback (most recent call last):
... ...
ValueError: transition_probabilities nested dictionary all values must be float ValueError: transition_probabilities nested dictionary all values must be float
>>> viterbi(observations, states, start_p, trans_p, "invalid") >>> viterbi(observations, states, start_p, trans_p, "invalid")
Traceback (most recent call last): Traceback (most recent call last):
... ...
ValueError: emission_probabilities must be a dict ValueError: emission_probabilities must be a dict
>>> viterbi(observations, states, start_p, trans_p, None) >>> viterbi(observations, states, start_p, trans_p, None)
Traceback (most recent call last): Traceback (most recent call last):
... ...
@ -213,7 +196,6 @@ def _validation(
... "Fever": {"normal": 0.1, "cold": 0.3, "dizzy": 0.6}, ... "Fever": {"normal": 0.1, "cold": 0.3, "dizzy": 0.6},
... } ... }
>>> _validation(observations, states, start_p, trans_p, emit_p) >>> _validation(observations, states, start_p, trans_p, emit_p)
>>> _validation([], states, start_p, trans_p, emit_p) >>> _validation([], states, start_p, trans_p, emit_p)
Traceback (most recent call last): Traceback (most recent call last):
... ...
@ -242,7 +224,6 @@ def _validate_not_empty(
""" """
>>> _validate_not_empty(["a"], ["b"], {"c":0.5}, >>> _validate_not_empty(["a"], ["b"], {"c":0.5},
... {"d": {"e": 0.6}}, {"f": {"g": 0.7}}) ... {"d": {"e": 0.6}}, {"f": {"g": 0.7}})
>>> _validate_not_empty(["a"], ["b"], {"c":0.5}, {}, {"f": {"g": 0.7}}) >>> _validate_not_empty(["a"], ["b"], {"c":0.5}, {}, {"f": {"g": 0.7}})
Traceback (most recent call last): Traceback (most recent call last):
... ...
@ -267,12 +248,10 @@ def _validate_not_empty(
def _validate_lists(observations_space: Any, states_space: Any) -> None: def _validate_lists(observations_space: Any, states_space: Any) -> None:
""" """
>>> _validate_lists(["a"], ["b"]) >>> _validate_lists(["a"], ["b"])
>>> _validate_lists(1234, ["b"]) >>> _validate_lists(1234, ["b"])
Traceback (most recent call last): Traceback (most recent call last):
... ...
ValueError: observations_space must be a list ValueError: observations_space must be a list
>>> _validate_lists(["a"], [3]) >>> _validate_lists(["a"], [3])
Traceback (most recent call last): Traceback (most recent call last):
... ...
@ -285,7 +264,6 @@ def _validate_lists(observations_space: Any, states_space: Any) -> None:
def _validate_list(_object: Any, var_name: str) -> None: def _validate_list(_object: Any, var_name: str) -> None:
""" """
>>> _validate_list(["a"], "mock_name") >>> _validate_list(["a"], "mock_name")
>>> _validate_list("a", "mock_name") >>> _validate_list("a", "mock_name")
Traceback (most recent call last): Traceback (most recent call last):
... ...
@ -294,7 +272,6 @@ def _validate_list(_object: Any, var_name: str) -> None:
Traceback (most recent call last): Traceback (most recent call last):
... ...
ValueError: mock_name must be a list of strings ValueError: mock_name must be a list of strings
""" """
if not isinstance(_object, list): if not isinstance(_object, list):
msg = f"{var_name} must be a list" msg = f"{var_name} must be a list"
@ -313,7 +290,6 @@ def _validate_dicts(
) -> None: ) -> None:
""" """
>>> _validate_dicts({"c":0.5}, {"d": {"e": 0.6}}, {"f": {"g": 0.7}}) >>> _validate_dicts({"c":0.5}, {"d": {"e": 0.6}}, {"f": {"g": 0.7}})
>>> _validate_dicts("invalid", {"d": {"e": 0.6}}, {"f": {"g": 0.7}}) >>> _validate_dicts("invalid", {"d": {"e": 0.6}}, {"f": {"g": 0.7}})
Traceback (most recent call last): Traceback (most recent call last):
... ...
@ -339,7 +315,6 @@ def _validate_dicts(
def _validate_nested_dict(_object: Any, var_name: str) -> None: def _validate_nested_dict(_object: Any, var_name: str) -> None:
""" """
>>> _validate_nested_dict({"a":{"b": 0.5}}, "mock_name") >>> _validate_nested_dict({"a":{"b": 0.5}}, "mock_name")
>>> _validate_nested_dict("invalid", "mock_name") >>> _validate_nested_dict("invalid", "mock_name")
Traceback (most recent call last): Traceback (most recent call last):
... ...
@ -367,7 +342,6 @@ def _validate_dict(
) -> None: ) -> None:
""" """
>>> _validate_dict({"b": 0.5}, "mock_name", float) >>> _validate_dict({"b": 0.5}, "mock_name", float)
>>> _validate_dict("invalid", "mock_name", float) >>> _validate_dict("invalid", "mock_name", float)
Traceback (most recent call last): Traceback (most recent call last):
... ...