mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 08:17:01 +00:00
Added Softplus activation function (#9944)
This commit is contained in:
parent
c6ec99d571
commit
80a2087e0a
37
neural_network/activation_functions/softplus.py
Normal file
37
neural_network/activation_functions/softplus.py
Normal file
|
@ -0,0 +1,37 @@
|
|||
"""
|
||||
Softplus Activation Function
|
||||
|
||||
Use Case: The Softplus function is a smooth approximation of the ReLU function.
|
||||
For more detailed information, you can refer to the following link:
|
||||
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)#Softplus
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def softplus(vector: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
Implements the Softplus activation function.
|
||||
|
||||
Parameters:
|
||||
vector (np.ndarray): The input array for the Softplus activation.
|
||||
|
||||
Returns:
|
||||
np.ndarray: The input array after applying the Softplus activation.
|
||||
|
||||
Formula: f(x) = ln(1 + e^x)
|
||||
|
||||
Examples:
|
||||
>>> softplus(np.array([2.3, 0.6, -2, -3.8]))
|
||||
array([2.39554546, 1.03748795, 0.12692801, 0.02212422])
|
||||
|
||||
>>> softplus(np.array([-9.2, -0.3, 0.45, -4.56]))
|
||||
array([1.01034298e-04, 5.54355244e-01, 9.43248946e-01, 1.04077103e-02])
|
||||
"""
|
||||
return np.log(1 + np.exp(vector))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
Loading…
Reference in New Issue
Block a user