mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 08:17:01 +00:00
Added Mish Activation Function (#9942)
* Added Mish Activation Function * Apply suggestions from code review --------- Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com>
This commit is contained in:
parent
995c5533c6
commit
c6ec99d571
39
neural_network/activation_functions/mish.py
Normal file
39
neural_network/activation_functions/mish.py
Normal file
|
@ -0,0 +1,39 @@
|
|||
"""
|
||||
Mish Activation Function
|
||||
|
||||
Use Case: Improved version of the ReLU activation function used in Computer Vision.
|
||||
For more detailed information, you can refer to the following link:
|
||||
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)#Mish
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def mish(vector: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
Implements the Mish activation function.
|
||||
|
||||
Parameters:
|
||||
vector (np.ndarray): The input array for Mish activation.
|
||||
|
||||
Returns:
|
||||
np.ndarray: The input array after applying the Mish activation.
|
||||
|
||||
Formula:
|
||||
f(x) = x * tanh(softplus(x)) = x * tanh(ln(1 + e^x))
|
||||
|
||||
Examples:
|
||||
>>> mish(vector=np.array([2.3,0.6,-2,-3.8]))
|
||||
array([ 2.26211893, 0.46613649, -0.25250148, -0.08405831])
|
||||
|
||||
>>> mish(np.array([-9.2, -0.3, 0.45, -4.56]))
|
||||
array([-0.00092952, -0.15113318, 0.33152014, -0.04745745])
|
||||
|
||||
"""
|
||||
return vector * np.tanh(np.log(1 + np.exp(vector)))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
Loading…
Reference in New Issue
Block a user