mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 08:17:01 +00:00
Chinese Remainder Theorem | Diophantine Equation | Modular Division (#1248)
* Update .gitignore to remove __pycache__/ * added chinese_remainder_theorem * Added Diophantine_equation algorithm * Update Diophantine eqn & chinese remainder theorem * Update Diophantine eqn & chinese remainder theorem * added efficient modular division algorithm * added GCD function * update chinese_remainder_theorem | dipohantine eqn | modular_division * update chinese_remainder_theorem | dipohantine eqn | modular_division * added a new directory named blockchain & a files from data_structures/hashing/number_theory * added a new directory named blockchain & a files from data_structures/hashing/number_theory
This commit is contained in:
parent
b1a769cf44
commit
9cc9f67d64
91
blockchain/chinese_remainder_theorem.py
Normal file
91
blockchain/chinese_remainder_theorem.py
Normal file
|
@ -0,0 +1,91 @@
|
|||
# Chinese Remainder Theorem:
|
||||
# GCD ( Greatest Common Divisor ) or HCF ( Highest Common Factor )
|
||||
|
||||
# If GCD(a,b) = 1, then for any remainder ra modulo a and any remainder rb modulo b there exists integer n,
|
||||
# such that n = ra (mod a) and n = ra(mod b). If n1 and n2 are two such integers, then n1=n2(mod ab)
|
||||
|
||||
# Algorithm :
|
||||
|
||||
# 1. Use extended euclid algorithm to find x,y such that a*x + b*y = 1
|
||||
# 2. Take n = ra*by + rb*ax
|
||||
|
||||
|
||||
# Extended Euclid
|
||||
def extended_euclid(a, b):
|
||||
"""
|
||||
>>> extended_euclid(10, 6)
|
||||
(-1, 2)
|
||||
|
||||
>>> extended_euclid(7, 5)
|
||||
(-2, 3)
|
||||
|
||||
"""
|
||||
if b == 0:
|
||||
return (1, 0)
|
||||
(x, y) = extended_euclid(b, a % b)
|
||||
k = a // b
|
||||
return (y, x - k * y)
|
||||
|
||||
|
||||
# Uses ExtendedEuclid to find inverses
|
||||
def chinese_remainder_theorem(n1, r1, n2, r2):
|
||||
"""
|
||||
>>> chinese_remainder_theorem(5,1,7,3)
|
||||
31
|
||||
|
||||
Explanation : 31 is the smallest number such that
|
||||
(i) When we divide it by 5, we get remainder 1
|
||||
(ii) When we divide it by 7, we get remainder 3
|
||||
|
||||
>>> chinese_remainder_theorem(6,1,4,3)
|
||||
14
|
||||
|
||||
"""
|
||||
(x, y) = extended_euclid(n1, n2)
|
||||
m = n1 * n2
|
||||
n = r2 * x * n1 + r1 * y * n2
|
||||
return ((n % m + m) % m)
|
||||
|
||||
|
||||
# ----------SAME SOLUTION USING InvertModulo instead ExtendedEuclid----------------
|
||||
|
||||
# This function find the inverses of a i.e., a^(-1)
|
||||
def invert_modulo(a, n):
|
||||
"""
|
||||
>>> invert_modulo(2, 5)
|
||||
3
|
||||
|
||||
>>> invert_modulo(8,7)
|
||||
1
|
||||
|
||||
"""
|
||||
(b, x) = extended_euclid(a, n)
|
||||
if b < 0:
|
||||
b = (b % n + n) % n
|
||||
return b
|
||||
|
||||
|
||||
# Same a above using InvertingModulo
|
||||
def chinese_remainder_theorem2(n1, r1, n2, r2):
|
||||
"""
|
||||
>>> chinese_remainder_theorem2(5,1,7,3)
|
||||
31
|
||||
|
||||
>>> chinese_remainder_theorem2(6,1,4,3)
|
||||
14
|
||||
|
||||
"""
|
||||
x, y = invert_modulo(n1, n2), invert_modulo(n2, n1)
|
||||
m = n1 * n2
|
||||
n = r2 * x * n1 + r1 * y * n2
|
||||
return (n % m + m) % m
|
||||
|
||||
|
||||
# import testmod for testing our function
|
||||
from doctest import testmod
|
||||
|
||||
if __name__ == '__main__':
|
||||
testmod(name='chinese_remainder_theorem', verbose=True)
|
||||
testmod(name='chinese_remainder_theorem2', verbose=True)
|
||||
testmod(name='invert_modulo', verbose=True)
|
||||
testmod(name='extended_euclid', verbose=True)
|
124
blockchain/diophantine_equation.py
Normal file
124
blockchain/diophantine_equation.py
Normal file
|
@ -0,0 +1,124 @@
|
|||
# Diophantine Equation : Given integers a,b,c ( at least one of a and b != 0), the diophantine equation
|
||||
# a*x + b*y = c has a solution (where x and y are integers) iff gcd(a,b) divides c.
|
||||
|
||||
# GCD ( Greatest Common Divisor ) or HCF ( Highest Common Factor )
|
||||
|
||||
|
||||
def diophantine(a, b, c):
|
||||
"""
|
||||
>>> diophantine(10,6,14)
|
||||
(-7.0, 14.0)
|
||||
|
||||
>>> diophantine(391,299,-69)
|
||||
(9.0, -12.0)
|
||||
|
||||
But above equation has one more solution i.e., x = -4, y = 5.
|
||||
That's why we need diophantine all solution function.
|
||||
|
||||
"""
|
||||
|
||||
assert c % greatest_common_divisor(a, b) == 0 # greatest_common_divisor(a,b) function implemented below
|
||||
(d, x, y) = extended_gcd(a, b) # extended_gcd(a,b) function implemented below
|
||||
r = c / d
|
||||
return (r * x, r * y)
|
||||
|
||||
|
||||
# Lemma : if n|ab and gcd(a,n) = 1, then n|b.
|
||||
|
||||
# Finding All solutions of Diophantine Equations:
|
||||
|
||||
# Theorem : Let gcd(a,b) = d, a = d*p, b = d*q. If (x0,y0) is a solution of Diophantine Equation a*x + b*y = c.
|
||||
# a*x0 + b*y0 = c, then all the solutions have the form a(x0 + t*q) + b(y0 - t*p) = c, where t is an arbitrary integer.
|
||||
|
||||
# n is the number of solution you want, n = 2 by default
|
||||
|
||||
def diophantine_all_soln(a, b, c, n=2):
|
||||
"""
|
||||
>>> diophantine_all_soln(10, 6, 14)
|
||||
-7.0 14.0
|
||||
-4.0 9.0
|
||||
|
||||
>>> diophantine_all_soln(10, 6, 14, 4)
|
||||
-7.0 14.0
|
||||
-4.0 9.0
|
||||
-1.0 4.0
|
||||
2.0 -1.0
|
||||
|
||||
>>> diophantine_all_soln(391, 299, -69, n = 4)
|
||||
9.0 -12.0
|
||||
22.0 -29.0
|
||||
35.0 -46.0
|
||||
48.0 -63.0
|
||||
|
||||
"""
|
||||
(x0, y0) = diophantine(a, b, c) # Initial value
|
||||
d = greatest_common_divisor(a, b)
|
||||
p = a // d
|
||||
q = b // d
|
||||
|
||||
for i in range(n):
|
||||
x = x0 + i * q
|
||||
y = y0 - i * p
|
||||
print(x, y)
|
||||
|
||||
|
||||
# Euclid's Lemma : d divides a and b, if and only if d divides a-b and b
|
||||
|
||||
# Euclid's Algorithm
|
||||
|
||||
def greatest_common_divisor(a, b):
|
||||
"""
|
||||
>>> greatest_common_divisor(7,5)
|
||||
1
|
||||
|
||||
Note : In number theory, two integers a and b are said to be relatively prime, mutually prime, or co-prime
|
||||
if the only positive integer (factor) that divides both of them is 1 i.e., gcd(a,b) = 1.
|
||||
|
||||
>>> greatest_common_divisor(121, 11)
|
||||
11
|
||||
|
||||
"""
|
||||
if a < b:
|
||||
a, b = b, a
|
||||
|
||||
while a % b != 0:
|
||||
a, b = b, a % b
|
||||
|
||||
return b
|
||||
|
||||
|
||||
# Extended Euclid's Algorithm : If d divides a and b and d = a*x + b*y for integers x and y, then d = gcd(a,b)
|
||||
|
||||
|
||||
def extended_gcd(a, b):
|
||||
"""
|
||||
>>> extended_gcd(10, 6)
|
||||
(2, -1, 2)
|
||||
|
||||
>>> extended_gcd(7, 5)
|
||||
(1, -2, 3)
|
||||
|
||||
"""
|
||||
assert a >= 0 and b >= 0
|
||||
|
||||
if b == 0:
|
||||
d, x, y = a, 1, 0
|
||||
else:
|
||||
(d, p, q) = extended_gcd(b, a % b)
|
||||
x = q
|
||||
y = p - q * (a // b)
|
||||
|
||||
assert a % d == 0 and b % d == 0
|
||||
assert d == a * x + b * y
|
||||
|
||||
return (d, x, y)
|
||||
|
||||
|
||||
# import testmod for testing our function
|
||||
from doctest import testmod
|
||||
|
||||
if __name__ == '__main__':
|
||||
testmod(name='diophantine', verbose=True)
|
||||
testmod(name='diophantine_all_soln', verbose=True)
|
||||
testmod(name='extended_gcd', verbose=True)
|
||||
testmod(name='greatest_common_divisor', verbose=True)
|
149
blockchain/modular_division.py
Normal file
149
blockchain/modular_division.py
Normal file
|
@ -0,0 +1,149 @@
|
|||
# Modular Division :
|
||||
# An efficient algorithm for dividing b by a modulo n.
|
||||
|
||||
# GCD ( Greatest Common Divisor ) or HCF ( Highest Common Factor )
|
||||
|
||||
# Given three integers a, b, and n, such that gcd(a,n)=1 and n>1, the algorithm should return an integer x such that
|
||||
# 0≤x≤n−1, and b/a=x(modn) (that is, b=ax(modn)).
|
||||
|
||||
# Theorem:
|
||||
# a has a multiplicative inverse modulo n iff gcd(a,n) = 1
|
||||
|
||||
|
||||
# This find x = b*a^(-1) mod n
|
||||
# Uses ExtendedEuclid to find the inverse of a
|
||||
|
||||
|
||||
def modular_division(a, b, n):
|
||||
"""
|
||||
>>> modular_division(4,8,5)
|
||||
2
|
||||
|
||||
>>> modular_division(3,8,5)
|
||||
1
|
||||
|
||||
>>> modular_division(4, 11, 5)
|
||||
4
|
||||
|
||||
"""
|
||||
assert n > 1 and a > 0 and greatest_common_divisor(a, n) == 1
|
||||
(d, t, s) = extended_gcd(n, a) # Implemented below
|
||||
x = (b * s) % n
|
||||
return x
|
||||
|
||||
|
||||
# This function find the inverses of a i.e., a^(-1)
|
||||
def invert_modulo(a, n):
|
||||
"""
|
||||
>>> invert_modulo(2, 5)
|
||||
3
|
||||
|
||||
>>> invert_modulo(8,7)
|
||||
1
|
||||
|
||||
"""
|
||||
(b, x) = extended_euclid(a, n) # Implemented below
|
||||
if b < 0:
|
||||
b = (b % n + n) % n
|
||||
return b
|
||||
|
||||
|
||||
# ------------------ Finding Modular division using invert_modulo -------------------
|
||||
|
||||
# This function used the above inversion of a to find x = (b*a^(-1))mod n
|
||||
def modular_division2(a, b, n):
|
||||
"""
|
||||
>>> modular_division2(4,8,5)
|
||||
2
|
||||
|
||||
>>> modular_division2(3,8,5)
|
||||
1
|
||||
|
||||
>>> modular_division2(4, 11, 5)
|
||||
4
|
||||
|
||||
"""
|
||||
s = invert_modulo(a, n)
|
||||
x = (b * s) % n
|
||||
return x
|
||||
|
||||
|
||||
# Extended Euclid's Algorithm : If d divides a and b and d = a*x + b*y for integers x and y, then d = gcd(a,b)
|
||||
|
||||
def extended_gcd(a, b):
|
||||
"""
|
||||
>>> extended_gcd(10, 6)
|
||||
(2, -1, 2)
|
||||
|
||||
>>> extended_gcd(7, 5)
|
||||
(1, -2, 3)
|
||||
|
||||
** extended_gcd function is used when d = gcd(a,b) is required in output
|
||||
|
||||
"""
|
||||
assert a >= 0 and b >= 0
|
||||
|
||||
if b == 0:
|
||||
d, x, y = a, 1, 0
|
||||
else:
|
||||
(d, p, q) = extended_gcd(b, a % b)
|
||||
x = q
|
||||
y = p - q * (a // b)
|
||||
|
||||
assert a % d == 0 and b % d == 0
|
||||
assert d == a * x + b * y
|
||||
|
||||
return (d, x, y)
|
||||
|
||||
|
||||
# Extended Euclid
|
||||
def extended_euclid(a, b):
|
||||
"""
|
||||
>>> extended_euclid(10, 6)
|
||||
(-1, 2)
|
||||
|
||||
>>> extended_euclid(7, 5)
|
||||
(-2, 3)
|
||||
|
||||
"""
|
||||
if b == 0:
|
||||
return (1, 0)
|
||||
(x, y) = extended_euclid(b, a % b)
|
||||
k = a // b
|
||||
return (y, x - k * y)
|
||||
|
||||
|
||||
# Euclid's Lemma : d divides a and b, if and only if d divides a-b and b
|
||||
# Euclid's Algorithm
|
||||
|
||||
def greatest_common_divisor(a, b):
|
||||
"""
|
||||
>>> greatest_common_divisor(7,5)
|
||||
1
|
||||
|
||||
Note : In number theory, two integers a and b are said to be relatively prime, mutually prime, or co-prime
|
||||
if the only positive integer (factor) that divides both of them is 1 i.e., gcd(a,b) = 1.
|
||||
|
||||
>>> greatest_common_divisor(121, 11)
|
||||
11
|
||||
|
||||
"""
|
||||
if a < b:
|
||||
a, b = b, a
|
||||
|
||||
while a % b != 0:
|
||||
a, b = b, a % b
|
||||
|
||||
return b
|
||||
|
||||
|
||||
# Import testmod for testing our function
|
||||
from doctest import testmod
|
||||
|
||||
if __name__ == '__main__':
|
||||
testmod(name='modular_division', verbose=True)
|
||||
testmod(name='modular_division2', verbose=True)
|
||||
testmod(name='invert_modulo', verbose=True)
|
||||
testmod(name='extended_gcd', verbose=True)
|
||||
testmod(name='extended_euclid', verbose=True)
|
||||
testmod(name='greatest_common_divisor', verbose=True)
|
Loading…
Reference in New Issue
Block a user