Chinese Remainder Theorem | Diophantine Equation | Modular Division (#1248)

* Update .gitignore to remove __pycache__/

* added chinese_remainder_theorem

* Added Diophantine_equation algorithm

* Update Diophantine eqn & chinese remainder theorem

* Update Diophantine eqn & chinese remainder theorem

* added efficient modular division algorithm

* added GCD function

* update chinese_remainder_theorem | dipohantine eqn | modular_division

* update chinese_remainder_theorem | dipohantine eqn | modular_division

* added a new directory named blockchain & a files from data_structures/hashing/number_theory

* added a new directory named blockchain & a files from data_structures/hashing/number_theory
This commit is contained in:
Sushil Singh 2019-10-07 00:22:04 +05:30 committed by Christian Clauss
parent b1a769cf44
commit 9cc9f67d64
3 changed files with 364 additions and 0 deletions

View File

@ -0,0 +1,91 @@
# Chinese Remainder Theorem:
# GCD ( Greatest Common Divisor ) or HCF ( Highest Common Factor )
# If GCD(a,b) = 1, then for any remainder ra modulo a and any remainder rb modulo b there exists integer n,
# such that n = ra (mod a) and n = ra(mod b). If n1 and n2 are two such integers, then n1=n2(mod ab)
# Algorithm :
# 1. Use extended euclid algorithm to find x,y such that a*x + b*y = 1
# 2. Take n = ra*by + rb*ax
# Extended Euclid
def extended_euclid(a, b):
"""
>>> extended_euclid(10, 6)
(-1, 2)
>>> extended_euclid(7, 5)
(-2, 3)
"""
if b == 0:
return (1, 0)
(x, y) = extended_euclid(b, a % b)
k = a // b
return (y, x - k * y)
# Uses ExtendedEuclid to find inverses
def chinese_remainder_theorem(n1, r1, n2, r2):
"""
>>> chinese_remainder_theorem(5,1,7,3)
31
Explanation : 31 is the smallest number such that
(i) When we divide it by 5, we get remainder 1
(ii) When we divide it by 7, we get remainder 3
>>> chinese_remainder_theorem(6,1,4,3)
14
"""
(x, y) = extended_euclid(n1, n2)
m = n1 * n2
n = r2 * x * n1 + r1 * y * n2
return ((n % m + m) % m)
# ----------SAME SOLUTION USING InvertModulo instead ExtendedEuclid----------------
# This function find the inverses of a i.e., a^(-1)
def invert_modulo(a, n):
"""
>>> invert_modulo(2, 5)
3
>>> invert_modulo(8,7)
1
"""
(b, x) = extended_euclid(a, n)
if b < 0:
b = (b % n + n) % n
return b
# Same a above using InvertingModulo
def chinese_remainder_theorem2(n1, r1, n2, r2):
"""
>>> chinese_remainder_theorem2(5,1,7,3)
31
>>> chinese_remainder_theorem2(6,1,4,3)
14
"""
x, y = invert_modulo(n1, n2), invert_modulo(n2, n1)
m = n1 * n2
n = r2 * x * n1 + r1 * y * n2
return (n % m + m) % m
# import testmod for testing our function
from doctest import testmod
if __name__ == '__main__':
testmod(name='chinese_remainder_theorem', verbose=True)
testmod(name='chinese_remainder_theorem2', verbose=True)
testmod(name='invert_modulo', verbose=True)
testmod(name='extended_euclid', verbose=True)

View File

@ -0,0 +1,124 @@
# Diophantine Equation : Given integers a,b,c ( at least one of a and b != 0), the diophantine equation
# a*x + b*y = c has a solution (where x and y are integers) iff gcd(a,b) divides c.
# GCD ( Greatest Common Divisor ) or HCF ( Highest Common Factor )
def diophantine(a, b, c):
"""
>>> diophantine(10,6,14)
(-7.0, 14.0)
>>> diophantine(391,299,-69)
(9.0, -12.0)
But above equation has one more solution i.e., x = -4, y = 5.
That's why we need diophantine all solution function.
"""
assert c % greatest_common_divisor(a, b) == 0 # greatest_common_divisor(a,b) function implemented below
(d, x, y) = extended_gcd(a, b) # extended_gcd(a,b) function implemented below
r = c / d
return (r * x, r * y)
# Lemma : if n|ab and gcd(a,n) = 1, then n|b.
# Finding All solutions of Diophantine Equations:
# Theorem : Let gcd(a,b) = d, a = d*p, b = d*q. If (x0,y0) is a solution of Diophantine Equation a*x + b*y = c.
# a*x0 + b*y0 = c, then all the solutions have the form a(x0 + t*q) + b(y0 - t*p) = c, where t is an arbitrary integer.
# n is the number of solution you want, n = 2 by default
def diophantine_all_soln(a, b, c, n=2):
"""
>>> diophantine_all_soln(10, 6, 14)
-7.0 14.0
-4.0 9.0
>>> diophantine_all_soln(10, 6, 14, 4)
-7.0 14.0
-4.0 9.0
-1.0 4.0
2.0 -1.0
>>> diophantine_all_soln(391, 299, -69, n = 4)
9.0 -12.0
22.0 -29.0
35.0 -46.0
48.0 -63.0
"""
(x0, y0) = diophantine(a, b, c) # Initial value
d = greatest_common_divisor(a, b)
p = a // d
q = b // d
for i in range(n):
x = x0 + i * q
y = y0 - i * p
print(x, y)
# Euclid's Lemma : d divides a and b, if and only if d divides a-b and b
# Euclid's Algorithm
def greatest_common_divisor(a, b):
"""
>>> greatest_common_divisor(7,5)
1
Note : In number theory, two integers a and b are said to be relatively prime, mutually prime, or co-prime
if the only positive integer (factor) that divides both of them is 1 i.e., gcd(a,b) = 1.
>>> greatest_common_divisor(121, 11)
11
"""
if a < b:
a, b = b, a
while a % b != 0:
a, b = b, a % b
return b
# Extended Euclid's Algorithm : If d divides a and b and d = a*x + b*y for integers x and y, then d = gcd(a,b)
def extended_gcd(a, b):
"""
>>> extended_gcd(10, 6)
(2, -1, 2)
>>> extended_gcd(7, 5)
(1, -2, 3)
"""
assert a >= 0 and b >= 0
if b == 0:
d, x, y = a, 1, 0
else:
(d, p, q) = extended_gcd(b, a % b)
x = q
y = p - q * (a // b)
assert a % d == 0 and b % d == 0
assert d == a * x + b * y
return (d, x, y)
# import testmod for testing our function
from doctest import testmod
if __name__ == '__main__':
testmod(name='diophantine', verbose=True)
testmod(name='diophantine_all_soln', verbose=True)
testmod(name='extended_gcd', verbose=True)
testmod(name='greatest_common_divisor', verbose=True)

View File

@ -0,0 +1,149 @@
# Modular Division :
# An efficient algorithm for dividing b by a modulo n.
# GCD ( Greatest Common Divisor ) or HCF ( Highest Common Factor )
# Given three integers a, b, and n, such that gcd(a,n)=1 and n>1, the algorithm should return an integer x such that
# 0≤x≤n1, and b/a=x(modn) (that is, b=ax(modn)).
# Theorem:
# a has a multiplicative inverse modulo n iff gcd(a,n) = 1
# This find x = b*a^(-1) mod n
# Uses ExtendedEuclid to find the inverse of a
def modular_division(a, b, n):
"""
>>> modular_division(4,8,5)
2
>>> modular_division(3,8,5)
1
>>> modular_division(4, 11, 5)
4
"""
assert n > 1 and a > 0 and greatest_common_divisor(a, n) == 1
(d, t, s) = extended_gcd(n, a) # Implemented below
x = (b * s) % n
return x
# This function find the inverses of a i.e., a^(-1)
def invert_modulo(a, n):
"""
>>> invert_modulo(2, 5)
3
>>> invert_modulo(8,7)
1
"""
(b, x) = extended_euclid(a, n) # Implemented below
if b < 0:
b = (b % n + n) % n
return b
# ------------------ Finding Modular division using invert_modulo -------------------
# This function used the above inversion of a to find x = (b*a^(-1))mod n
def modular_division2(a, b, n):
"""
>>> modular_division2(4,8,5)
2
>>> modular_division2(3,8,5)
1
>>> modular_division2(4, 11, 5)
4
"""
s = invert_modulo(a, n)
x = (b * s) % n
return x
# Extended Euclid's Algorithm : If d divides a and b and d = a*x + b*y for integers x and y, then d = gcd(a,b)
def extended_gcd(a, b):
"""
>>> extended_gcd(10, 6)
(2, -1, 2)
>>> extended_gcd(7, 5)
(1, -2, 3)
** extended_gcd function is used when d = gcd(a,b) is required in output
"""
assert a >= 0 and b >= 0
if b == 0:
d, x, y = a, 1, 0
else:
(d, p, q) = extended_gcd(b, a % b)
x = q
y = p - q * (a // b)
assert a % d == 0 and b % d == 0
assert d == a * x + b * y
return (d, x, y)
# Extended Euclid
def extended_euclid(a, b):
"""
>>> extended_euclid(10, 6)
(-1, 2)
>>> extended_euclid(7, 5)
(-2, 3)
"""
if b == 0:
return (1, 0)
(x, y) = extended_euclid(b, a % b)
k = a // b
return (y, x - k * y)
# Euclid's Lemma : d divides a and b, if and only if d divides a-b and b
# Euclid's Algorithm
def greatest_common_divisor(a, b):
"""
>>> greatest_common_divisor(7,5)
1
Note : In number theory, two integers a and b are said to be relatively prime, mutually prime, or co-prime
if the only positive integer (factor) that divides both of them is 1 i.e., gcd(a,b) = 1.
>>> greatest_common_divisor(121, 11)
11
"""
if a < b:
a, b = b, a
while a % b != 0:
a, b = b, a % b
return b
# Import testmod for testing our function
from doctest import testmod
if __name__ == '__main__':
testmod(name='modular_division', verbose=True)
testmod(name='modular_division2', verbose=True)
testmod(name='invert_modulo', verbose=True)
testmod(name='extended_gcd', verbose=True)
testmod(name='extended_euclid', verbose=True)
testmod(name='greatest_common_divisor', verbose=True)