mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 00:07:00 +00:00
Delete arithmetic_analysis/
directory and relocate its contents (#10824)
* Remove eval from arithmetic_analysis/newton_raphson.py * Relocate contents of arithmetic_analysis/ Delete the arithmetic_analysis/ directory and relocate its files because the purpose of the directory was always ill-defined. "Arithmetic analysis" isn't a field of math, and the directory's files contained algorithms for linear algebra, numerical analysis, and physics. Relocated the directory's linear algebra algorithms to linear_algebra/, its numerical analysis algorithms to a new subdirectory called maths/numerical_analysis/, and its single physics algorithm to physics/. * updating DIRECTORY.md --------- Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
This commit is contained in:
parent
a9cee1d933
commit
a8b6bda993
43
DIRECTORY.md
43
DIRECTORY.md
|
@ -1,17 +1,4 @@
|
|||
|
||||
## Arithmetic Analysis
|
||||
* [Bisection](arithmetic_analysis/bisection.py)
|
||||
* [Gaussian Elimination](arithmetic_analysis/gaussian_elimination.py)
|
||||
* [In Static Equilibrium](arithmetic_analysis/in_static_equilibrium.py)
|
||||
* [Intersection](arithmetic_analysis/intersection.py)
|
||||
* [Jacobi Iteration Method](arithmetic_analysis/jacobi_iteration_method.py)
|
||||
* [Lu Decomposition](arithmetic_analysis/lu_decomposition.py)
|
||||
* [Newton Forward Interpolation](arithmetic_analysis/newton_forward_interpolation.py)
|
||||
* [Newton Method](arithmetic_analysis/newton_method.py)
|
||||
* [Newton Raphson](arithmetic_analysis/newton_raphson.py)
|
||||
* [Newton Raphson New](arithmetic_analysis/newton_raphson_new.py)
|
||||
* [Secant Method](arithmetic_analysis/secant_method.py)
|
||||
|
||||
## Audio Filters
|
||||
* [Butterworth Filter](audio_filters/butterworth_filter.py)
|
||||
* [Iir Filter](audio_filters/iir_filter.py)
|
||||
|
@ -520,6 +507,9 @@
|
|||
* [Test Knapsack](knapsack/tests/test_knapsack.py)
|
||||
|
||||
## Linear Algebra
|
||||
* [Gaussian Elimination](linear_algebra/gaussian_elimination.py)
|
||||
* [Jacobi Iteration Method](linear_algebra/jacobi_iteration_method.py)
|
||||
* [Lu Decomposition](linear_algebra/lu_decomposition.py)
|
||||
* Src
|
||||
* [Conjugate Gradient](linear_algebra/src/conjugate_gradient.py)
|
||||
* [Lib](linear_algebra/src/lib.py)
|
||||
|
@ -583,7 +573,6 @@
|
|||
* [Binary Multiplication](maths/binary_multiplication.py)
|
||||
* [Binomial Coefficient](maths/binomial_coefficient.py)
|
||||
* [Binomial Distribution](maths/binomial_distribution.py)
|
||||
* [Bisection](maths/bisection.py)
|
||||
* [Ceil](maths/ceil.py)
|
||||
* [Chebyshev Distance](maths/chebyshev_distance.py)
|
||||
* [Check Polygon](maths/check_polygon.py)
|
||||
|
@ -617,7 +606,6 @@
|
|||
* [Germain Primes](maths/germain_primes.py)
|
||||
* [Greatest Common Divisor](maths/greatest_common_divisor.py)
|
||||
* [Hardy Ramanujanalgo](maths/hardy_ramanujanalgo.py)
|
||||
* [Integration By Simpson Approx](maths/integration_by_simpson_approx.py)
|
||||
* [Interquartile Range](maths/interquartile_range.py)
|
||||
* [Is Int Palindrome](maths/is_int_palindrome.py)
|
||||
* [Is Ip V4 Address Valid](maths/is_ip_v4_address_valid.py)
|
||||
|
@ -644,10 +632,24 @@
|
|||
* [Modular Exponential](maths/modular_exponential.py)
|
||||
* [Monte Carlo](maths/monte_carlo.py)
|
||||
* [Monte Carlo Dice](maths/monte_carlo_dice.py)
|
||||
* [Nevilles Method](maths/nevilles_method.py)
|
||||
* [Newton Raphson](maths/newton_raphson.py)
|
||||
* [Number Of Digits](maths/number_of_digits.py)
|
||||
* [Numerical Integration](maths/numerical_integration.py)
|
||||
* Numerical Analysis
|
||||
* [Bisection](maths/numerical_analysis/bisection.py)
|
||||
* [Bisection 2](maths/numerical_analysis/bisection_2.py)
|
||||
* [Integration By Simpson Approx](maths/numerical_analysis/integration_by_simpson_approx.py)
|
||||
* [Intersection](maths/numerical_analysis/intersection.py)
|
||||
* [Nevilles Method](maths/numerical_analysis/nevilles_method.py)
|
||||
* [Newton Forward Interpolation](maths/numerical_analysis/newton_forward_interpolation.py)
|
||||
* [Newton Method](maths/numerical_analysis/newton_method.py)
|
||||
* [Newton Raphson](maths/numerical_analysis/newton_raphson.py)
|
||||
* [Newton Raphson 2](maths/numerical_analysis/newton_raphson_2.py)
|
||||
* [Newton Raphson New](maths/numerical_analysis/newton_raphson_new.py)
|
||||
* [Numerical Integration](maths/numerical_analysis/numerical_integration.py)
|
||||
* [Runge Kutta](maths/numerical_analysis/runge_kutta.py)
|
||||
* [Runge Kutta Fehlberg 45](maths/numerical_analysis/runge_kutta_fehlberg_45.py)
|
||||
* [Secant Method](maths/numerical_analysis/secant_method.py)
|
||||
* [Simpson Rule](maths/numerical_analysis/simpson_rule.py)
|
||||
* [Square Root](maths/numerical_analysis/square_root.py)
|
||||
* [Odd Sieve](maths/odd_sieve.py)
|
||||
* [Perfect Cube](maths/perfect_cube.py)
|
||||
* [Perfect Number](maths/perfect_number.py)
|
||||
|
@ -673,8 +675,6 @@
|
|||
* [Radians](maths/radians.py)
|
||||
* [Radix2 Fft](maths/radix2_fft.py)
|
||||
* [Remove Digit](maths/remove_digit.py)
|
||||
* [Runge Kutta](maths/runge_kutta.py)
|
||||
* [Runge Kutta Fehlberg 45](maths/runge_kutta_fehlberg_45.py)
|
||||
* [Segmented Sieve](maths/segmented_sieve.py)
|
||||
* Series
|
||||
* [Arithmetic](maths/series/arithmetic.py)
|
||||
|
@ -687,7 +687,6 @@
|
|||
* [Sieve Of Eratosthenes](maths/sieve_of_eratosthenes.py)
|
||||
* [Sigmoid](maths/sigmoid.py)
|
||||
* [Signum](maths/signum.py)
|
||||
* [Simpson Rule](maths/simpson_rule.py)
|
||||
* [Simultaneous Linear Equation Solver](maths/simultaneous_linear_equation_solver.py)
|
||||
* [Sin](maths/sin.py)
|
||||
* [Sock Merchant](maths/sock_merchant.py)
|
||||
|
@ -709,7 +708,6 @@
|
|||
* [Proth Number](maths/special_numbers/proth_number.py)
|
||||
* [Ugly Numbers](maths/special_numbers/ugly_numbers.py)
|
||||
* [Weird Number](maths/special_numbers/weird_number.py)
|
||||
* [Square Root](maths/square_root.py)
|
||||
* [Sum Of Arithmetic Series](maths/sum_of_arithmetic_series.py)
|
||||
* [Sum Of Digits](maths/sum_of_digits.py)
|
||||
* [Sum Of Geometric Progression](maths/sum_of_geometric_progression.py)
|
||||
|
@ -812,6 +810,7 @@
|
|||
* [Horizontal Projectile Motion](physics/horizontal_projectile_motion.py)
|
||||
* [Hubble Parameter](physics/hubble_parameter.py)
|
||||
* [Ideal Gas Law](physics/ideal_gas_law.py)
|
||||
* [In Static Equilibrium](physics/in_static_equilibrium.py)
|
||||
* [Kinetic Energy](physics/kinetic_energy.py)
|
||||
* [Lorentz Transformation Four Vector](physics/lorentz_transformation_four_vector.py)
|
||||
* [Malus Law](physics/malus_law.py)
|
||||
|
|
|
@ -1,7 +0,0 @@
|
|||
# Arithmetic analysis
|
||||
|
||||
Arithmetic analysis is a branch of mathematics that deals with solving linear equations.
|
||||
|
||||
* <https://en.wikipedia.org/wiki/System_of_linear_equations>
|
||||
* <https://en.wikipedia.org/wiki/Gaussian_elimination>
|
||||
* <https://en.wikipedia.org/wiki/Root-finding_algorithms>
|
|
@ -1,203 +1,203 @@
|
|||
"""
|
||||
Jacobi Iteration Method - https://en.wikipedia.org/wiki/Jacobi_method
|
||||
"""
|
||||
from __future__ import annotations
|
||||
|
||||
import numpy as np
|
||||
from numpy import float64
|
||||
from numpy.typing import NDArray
|
||||
|
||||
|
||||
# Method to find solution of system of linear equations
|
||||
def jacobi_iteration_method(
|
||||
coefficient_matrix: NDArray[float64],
|
||||
constant_matrix: NDArray[float64],
|
||||
init_val: list[float],
|
||||
iterations: int,
|
||||
) -> list[float]:
|
||||
"""
|
||||
Jacobi Iteration Method:
|
||||
An iterative algorithm to determine the solutions of strictly diagonally dominant
|
||||
system of linear equations
|
||||
|
||||
4x1 + x2 + x3 = 2
|
||||
x1 + 5x2 + 2x3 = -6
|
||||
x1 + 2x2 + 4x3 = -4
|
||||
|
||||
x_init = [0.5, -0.5 , -0.5]
|
||||
|
||||
Examples:
|
||||
|
||||
>>> coefficient = np.array([[4, 1, 1], [1, 5, 2], [1, 2, 4]])
|
||||
>>> constant = np.array([[2], [-6], [-4]])
|
||||
>>> init_val = [0.5, -0.5, -0.5]
|
||||
>>> iterations = 3
|
||||
>>> jacobi_iteration_method(coefficient, constant, init_val, iterations)
|
||||
[0.909375, -1.14375, -0.7484375]
|
||||
|
||||
|
||||
>>> coefficient = np.array([[4, 1, 1], [1, 5, 2]])
|
||||
>>> constant = np.array([[2], [-6], [-4]])
|
||||
>>> init_val = [0.5, -0.5, -0.5]
|
||||
>>> iterations = 3
|
||||
>>> jacobi_iteration_method(coefficient, constant, init_val, iterations)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Coefficient matrix dimensions must be nxn but received 2x3
|
||||
|
||||
>>> coefficient = np.array([[4, 1, 1], [1, 5, 2], [1, 2, 4]])
|
||||
>>> constant = np.array([[2], [-6]])
|
||||
>>> init_val = [0.5, -0.5, -0.5]
|
||||
>>> iterations = 3
|
||||
>>> jacobi_iteration_method(
|
||||
... coefficient, constant, init_val, iterations
|
||||
... ) # doctest: +NORMALIZE_WHITESPACE
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Coefficient and constant matrices dimensions must be nxn and nx1 but
|
||||
received 3x3 and 2x1
|
||||
|
||||
>>> coefficient = np.array([[4, 1, 1], [1, 5, 2], [1, 2, 4]])
|
||||
>>> constant = np.array([[2], [-6], [-4]])
|
||||
>>> init_val = [0.5, -0.5]
|
||||
>>> iterations = 3
|
||||
>>> jacobi_iteration_method(
|
||||
... coefficient, constant, init_val, iterations
|
||||
... ) # doctest: +NORMALIZE_WHITESPACE
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Number of initial values must be equal to number of rows in coefficient
|
||||
matrix but received 2 and 3
|
||||
|
||||
>>> coefficient = np.array([[4, 1, 1], [1, 5, 2], [1, 2, 4]])
|
||||
>>> constant = np.array([[2], [-6], [-4]])
|
||||
>>> init_val = [0.5, -0.5, -0.5]
|
||||
>>> iterations = 0
|
||||
>>> jacobi_iteration_method(coefficient, constant, init_val, iterations)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Iterations must be at least 1
|
||||
"""
|
||||
|
||||
rows1, cols1 = coefficient_matrix.shape
|
||||
rows2, cols2 = constant_matrix.shape
|
||||
|
||||
if rows1 != cols1:
|
||||
msg = f"Coefficient matrix dimensions must be nxn but received {rows1}x{cols1}"
|
||||
raise ValueError(msg)
|
||||
|
||||
if cols2 != 1:
|
||||
msg = f"Constant matrix must be nx1 but received {rows2}x{cols2}"
|
||||
raise ValueError(msg)
|
||||
|
||||
if rows1 != rows2:
|
||||
msg = (
|
||||
"Coefficient and constant matrices dimensions must be nxn and nx1 but "
|
||||
f"received {rows1}x{cols1} and {rows2}x{cols2}"
|
||||
)
|
||||
raise ValueError(msg)
|
||||
|
||||
if len(init_val) != rows1:
|
||||
msg = (
|
||||
"Number of initial values must be equal to number of rows in coefficient "
|
||||
f"matrix but received {len(init_val)} and {rows1}"
|
||||
)
|
||||
raise ValueError(msg)
|
||||
|
||||
if iterations <= 0:
|
||||
raise ValueError("Iterations must be at least 1")
|
||||
|
||||
table: NDArray[float64] = np.concatenate(
|
||||
(coefficient_matrix, constant_matrix), axis=1
|
||||
)
|
||||
|
||||
rows, cols = table.shape
|
||||
|
||||
strictly_diagonally_dominant(table)
|
||||
|
||||
"""
|
||||
# Iterates the whole matrix for given number of times
|
||||
for _ in range(iterations):
|
||||
new_val = []
|
||||
for row in range(rows):
|
||||
temp = 0
|
||||
for col in range(cols):
|
||||
if col == row:
|
||||
denom = table[row][col]
|
||||
elif col == cols - 1:
|
||||
val = table[row][col]
|
||||
else:
|
||||
temp += (-1) * table[row][col] * init_val[col]
|
||||
temp = (temp + val) / denom
|
||||
new_val.append(temp)
|
||||
init_val = new_val
|
||||
"""
|
||||
|
||||
# denominator - a list of values along the diagonal
|
||||
denominator = np.diag(coefficient_matrix)
|
||||
|
||||
# val_last - values of the last column of the table array
|
||||
val_last = table[:, -1]
|
||||
|
||||
# masks - boolean mask of all strings without diagonal
|
||||
# elements array coefficient_matrix
|
||||
masks = ~np.eye(coefficient_matrix.shape[0], dtype=bool)
|
||||
|
||||
# no_diagonals - coefficient_matrix array values without diagonal elements
|
||||
no_diagonals = coefficient_matrix[masks].reshape(-1, rows - 1)
|
||||
|
||||
# Here we get 'i_col' - these are the column numbers, for each row
|
||||
# without diagonal elements, except for the last column.
|
||||
i_row, i_col = np.where(masks)
|
||||
ind = i_col.reshape(-1, rows - 1)
|
||||
|
||||
#'i_col' is converted to a two-dimensional list 'ind', which will be
|
||||
# used to make selections from 'init_val' ('arr' array see below).
|
||||
|
||||
# Iterates the whole matrix for given number of times
|
||||
for _ in range(iterations):
|
||||
arr = np.take(init_val, ind)
|
||||
sum_product_rows = np.sum((-1) * no_diagonals * arr, axis=1)
|
||||
new_val = (sum_product_rows + val_last) / denominator
|
||||
init_val = new_val
|
||||
|
||||
return new_val.tolist()
|
||||
|
||||
|
||||
# Checks if the given matrix is strictly diagonally dominant
|
||||
def strictly_diagonally_dominant(table: NDArray[float64]) -> bool:
|
||||
"""
|
||||
>>> table = np.array([[4, 1, 1, 2], [1, 5, 2, -6], [1, 2, 4, -4]])
|
||||
>>> strictly_diagonally_dominant(table)
|
||||
True
|
||||
|
||||
>>> table = np.array([[4, 1, 1, 2], [1, 5, 2, -6], [1, 2, 3, -4]])
|
||||
>>> strictly_diagonally_dominant(table)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Coefficient matrix is not strictly diagonally dominant
|
||||
"""
|
||||
|
||||
rows, cols = table.shape
|
||||
|
||||
is_diagonally_dominant = True
|
||||
|
||||
for i in range(rows):
|
||||
total = 0
|
||||
for j in range(cols - 1):
|
||||
if i == j:
|
||||
continue
|
||||
else:
|
||||
total += table[i][j]
|
||||
|
||||
if table[i][i] <= total:
|
||||
raise ValueError("Coefficient matrix is not strictly diagonally dominant")
|
||||
|
||||
return is_diagonally_dominant
|
||||
|
||||
|
||||
# Test Cases
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
||||
"""
|
||||
Jacobi Iteration Method - https://en.wikipedia.org/wiki/Jacobi_method
|
||||
"""
|
||||
from __future__ import annotations
|
||||
|
||||
import numpy as np
|
||||
from numpy import float64
|
||||
from numpy.typing import NDArray
|
||||
|
||||
|
||||
# Method to find solution of system of linear equations
|
||||
def jacobi_iteration_method(
|
||||
coefficient_matrix: NDArray[float64],
|
||||
constant_matrix: NDArray[float64],
|
||||
init_val: list[float],
|
||||
iterations: int,
|
||||
) -> list[float]:
|
||||
"""
|
||||
Jacobi Iteration Method:
|
||||
An iterative algorithm to determine the solutions of strictly diagonally dominant
|
||||
system of linear equations
|
||||
|
||||
4x1 + x2 + x3 = 2
|
||||
x1 + 5x2 + 2x3 = -6
|
||||
x1 + 2x2 + 4x3 = -4
|
||||
|
||||
x_init = [0.5, -0.5 , -0.5]
|
||||
|
||||
Examples:
|
||||
|
||||
>>> coefficient = np.array([[4, 1, 1], [1, 5, 2], [1, 2, 4]])
|
||||
>>> constant = np.array([[2], [-6], [-4]])
|
||||
>>> init_val = [0.5, -0.5, -0.5]
|
||||
>>> iterations = 3
|
||||
>>> jacobi_iteration_method(coefficient, constant, init_val, iterations)
|
||||
[0.909375, -1.14375, -0.7484375]
|
||||
|
||||
|
||||
>>> coefficient = np.array([[4, 1, 1], [1, 5, 2]])
|
||||
>>> constant = np.array([[2], [-6], [-4]])
|
||||
>>> init_val = [0.5, -0.5, -0.5]
|
||||
>>> iterations = 3
|
||||
>>> jacobi_iteration_method(coefficient, constant, init_val, iterations)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Coefficient matrix dimensions must be nxn but received 2x3
|
||||
|
||||
>>> coefficient = np.array([[4, 1, 1], [1, 5, 2], [1, 2, 4]])
|
||||
>>> constant = np.array([[2], [-6]])
|
||||
>>> init_val = [0.5, -0.5, -0.5]
|
||||
>>> iterations = 3
|
||||
>>> jacobi_iteration_method(
|
||||
... coefficient, constant, init_val, iterations
|
||||
... ) # doctest: +NORMALIZE_WHITESPACE
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Coefficient and constant matrices dimensions must be nxn and nx1 but
|
||||
received 3x3 and 2x1
|
||||
|
||||
>>> coefficient = np.array([[4, 1, 1], [1, 5, 2], [1, 2, 4]])
|
||||
>>> constant = np.array([[2], [-6], [-4]])
|
||||
>>> init_val = [0.5, -0.5]
|
||||
>>> iterations = 3
|
||||
>>> jacobi_iteration_method(
|
||||
... coefficient, constant, init_val, iterations
|
||||
... ) # doctest: +NORMALIZE_WHITESPACE
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Number of initial values must be equal to number of rows in coefficient
|
||||
matrix but received 2 and 3
|
||||
|
||||
>>> coefficient = np.array([[4, 1, 1], [1, 5, 2], [1, 2, 4]])
|
||||
>>> constant = np.array([[2], [-6], [-4]])
|
||||
>>> init_val = [0.5, -0.5, -0.5]
|
||||
>>> iterations = 0
|
||||
>>> jacobi_iteration_method(coefficient, constant, init_val, iterations)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Iterations must be at least 1
|
||||
"""
|
||||
|
||||
rows1, cols1 = coefficient_matrix.shape
|
||||
rows2, cols2 = constant_matrix.shape
|
||||
|
||||
if rows1 != cols1:
|
||||
msg = f"Coefficient matrix dimensions must be nxn but received {rows1}x{cols1}"
|
||||
raise ValueError(msg)
|
||||
|
||||
if cols2 != 1:
|
||||
msg = f"Constant matrix must be nx1 but received {rows2}x{cols2}"
|
||||
raise ValueError(msg)
|
||||
|
||||
if rows1 != rows2:
|
||||
msg = (
|
||||
"Coefficient and constant matrices dimensions must be nxn and nx1 but "
|
||||
f"received {rows1}x{cols1} and {rows2}x{cols2}"
|
||||
)
|
||||
raise ValueError(msg)
|
||||
|
||||
if len(init_val) != rows1:
|
||||
msg = (
|
||||
"Number of initial values must be equal to number of rows in coefficient "
|
||||
f"matrix but received {len(init_val)} and {rows1}"
|
||||
)
|
||||
raise ValueError(msg)
|
||||
|
||||
if iterations <= 0:
|
||||
raise ValueError("Iterations must be at least 1")
|
||||
|
||||
table: NDArray[float64] = np.concatenate(
|
||||
(coefficient_matrix, constant_matrix), axis=1
|
||||
)
|
||||
|
||||
rows, cols = table.shape
|
||||
|
||||
strictly_diagonally_dominant(table)
|
||||
|
||||
"""
|
||||
# Iterates the whole matrix for given number of times
|
||||
for _ in range(iterations):
|
||||
new_val = []
|
||||
for row in range(rows):
|
||||
temp = 0
|
||||
for col in range(cols):
|
||||
if col == row:
|
||||
denom = table[row][col]
|
||||
elif col == cols - 1:
|
||||
val = table[row][col]
|
||||
else:
|
||||
temp += (-1) * table[row][col] * init_val[col]
|
||||
temp = (temp + val) / denom
|
||||
new_val.append(temp)
|
||||
init_val = new_val
|
||||
"""
|
||||
|
||||
# denominator - a list of values along the diagonal
|
||||
denominator = np.diag(coefficient_matrix)
|
||||
|
||||
# val_last - values of the last column of the table array
|
||||
val_last = table[:, -1]
|
||||
|
||||
# masks - boolean mask of all strings without diagonal
|
||||
# elements array coefficient_matrix
|
||||
masks = ~np.eye(coefficient_matrix.shape[0], dtype=bool)
|
||||
|
||||
# no_diagonals - coefficient_matrix array values without diagonal elements
|
||||
no_diagonals = coefficient_matrix[masks].reshape(-1, rows - 1)
|
||||
|
||||
# Here we get 'i_col' - these are the column numbers, for each row
|
||||
# without diagonal elements, except for the last column.
|
||||
i_row, i_col = np.where(masks)
|
||||
ind = i_col.reshape(-1, rows - 1)
|
||||
|
||||
#'i_col' is converted to a two-dimensional list 'ind', which will be
|
||||
# used to make selections from 'init_val' ('arr' array see below).
|
||||
|
||||
# Iterates the whole matrix for given number of times
|
||||
for _ in range(iterations):
|
||||
arr = np.take(init_val, ind)
|
||||
sum_product_rows = np.sum((-1) * no_diagonals * arr, axis=1)
|
||||
new_val = (sum_product_rows + val_last) / denominator
|
||||
init_val = new_val
|
||||
|
||||
return new_val.tolist()
|
||||
|
||||
|
||||
# Checks if the given matrix is strictly diagonally dominant
|
||||
def strictly_diagonally_dominant(table: NDArray[float64]) -> bool:
|
||||
"""
|
||||
>>> table = np.array([[4, 1, 1, 2], [1, 5, 2, -6], [1, 2, 4, -4]])
|
||||
>>> strictly_diagonally_dominant(table)
|
||||
True
|
||||
|
||||
>>> table = np.array([[4, 1, 1, 2], [1, 5, 2, -6], [1, 2, 3, -4]])
|
||||
>>> strictly_diagonally_dominant(table)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Coefficient matrix is not strictly diagonally dominant
|
||||
"""
|
||||
|
||||
rows, cols = table.shape
|
||||
|
||||
is_diagonally_dominant = True
|
||||
|
||||
for i in range(rows):
|
||||
total = 0
|
||||
for j in range(cols - 1):
|
||||
if i == j:
|
||||
continue
|
||||
else:
|
||||
total += table[i][j]
|
||||
|
||||
if table[i][i] <= total:
|
||||
raise ValueError("Coefficient matrix is not strictly diagonally dominant")
|
||||
|
||||
return is_diagonally_dominant
|
||||
|
||||
|
||||
# Test Cases
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
|
@ -5,42 +5,41 @@
|
|||
from __future__ import annotations
|
||||
|
||||
from decimal import Decimal
|
||||
from math import * # noqa: F403
|
||||
|
||||
from sympy import diff
|
||||
from sympy import diff, lambdify, symbols
|
||||
|
||||
|
||||
def newton_raphson(
|
||||
func: str, a: float | Decimal, precision: float = 10**-10
|
||||
) -> float:
|
||||
def newton_raphson(func: str, a: float | Decimal, precision: float = 1e-10) -> float:
|
||||
"""Finds root from the point 'a' onwards by Newton-Raphson method
|
||||
>>> newton_raphson("sin(x)", 2)
|
||||
3.1415926536808043
|
||||
>>> newton_raphson("x**2 - 5*x +2", 0.4)
|
||||
>>> newton_raphson("x**2 - 5*x + 2", 0.4)
|
||||
0.4384471871911695
|
||||
>>> newton_raphson("x**2 - 5", 0.1)
|
||||
2.23606797749979
|
||||
>>> newton_raphson("log(x)- 1", 2)
|
||||
>>> newton_raphson("log(x) - 1", 2)
|
||||
2.718281828458938
|
||||
"""
|
||||
x = a
|
||||
x = symbols("x")
|
||||
f = lambdify(x, func, "math")
|
||||
f_derivative = lambdify(x, diff(func), "math")
|
||||
x_curr = a
|
||||
while True:
|
||||
x = Decimal(x) - (
|
||||
Decimal(eval(func)) / Decimal(eval(str(diff(func)))) # noqa: S307
|
||||
)
|
||||
# This number dictates the accuracy of the answer
|
||||
if abs(eval(func)) < precision: # noqa: S307
|
||||
return float(x)
|
||||
x_curr = Decimal(x_curr) - Decimal(f(x_curr)) / Decimal(f_derivative(x_curr))
|
||||
if abs(f(x_curr)) < precision:
|
||||
return float(x_curr)
|
||||
|
||||
|
||||
# Let's Execute
|
||||
if __name__ == "__main__":
|
||||
# Find root of trigonometric function
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
||||
|
||||
# Find value of pi
|
||||
print(f"The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}")
|
||||
# Find root of polynomial
|
||||
print(f"The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}")
|
||||
# Find Square Root of 5
|
||||
# Find value of e
|
||||
print(f"The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}")
|
||||
# Exponential Roots
|
||||
# Find root of exponential function
|
||||
print(f"The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}")
|
Before Width: | Height: | Size: 57 KiB After Width: | Height: | Size: 57 KiB |
Before Width: | Height: | Size: 40 KiB After Width: | Height: | Size: 40 KiB |
|
@ -1,94 +1,94 @@
|
|||
"""
|
||||
Checks if a system of forces is in static equilibrium.
|
||||
"""
|
||||
from __future__ import annotations
|
||||
|
||||
from numpy import array, cos, cross, float64, radians, sin
|
||||
from numpy.typing import NDArray
|
||||
|
||||
|
||||
def polar_force(
|
||||
magnitude: float, angle: float, radian_mode: bool = False
|
||||
) -> list[float]:
|
||||
"""
|
||||
Resolves force along rectangular components.
|
||||
(force, angle) => (force_x, force_y)
|
||||
>>> import math
|
||||
>>> force = polar_force(10, 45)
|
||||
>>> math.isclose(force[0], 7.071067811865477)
|
||||
True
|
||||
>>> math.isclose(force[1], 7.0710678118654755)
|
||||
True
|
||||
>>> force = polar_force(10, 3.14, radian_mode=True)
|
||||
>>> math.isclose(force[0], -9.999987317275396)
|
||||
True
|
||||
>>> math.isclose(force[1], 0.01592652916486828)
|
||||
True
|
||||
"""
|
||||
if radian_mode:
|
||||
return [magnitude * cos(angle), magnitude * sin(angle)]
|
||||
return [magnitude * cos(radians(angle)), magnitude * sin(radians(angle))]
|
||||
|
||||
|
||||
def in_static_equilibrium(
|
||||
forces: NDArray[float64], location: NDArray[float64], eps: float = 10**-1
|
||||
) -> bool:
|
||||
"""
|
||||
Check if a system is in equilibrium.
|
||||
It takes two numpy.array objects.
|
||||
forces ==> [
|
||||
[force1_x, force1_y],
|
||||
[force2_x, force2_y],
|
||||
....]
|
||||
location ==> [
|
||||
[x1, y1],
|
||||
[x2, y2],
|
||||
....]
|
||||
>>> force = array([[1, 1], [-1, 2]])
|
||||
>>> location = array([[1, 0], [10, 0]])
|
||||
>>> in_static_equilibrium(force, location)
|
||||
False
|
||||
"""
|
||||
# summation of moments is zero
|
||||
moments: NDArray[float64] = cross(location, forces)
|
||||
sum_moments: float = sum(moments)
|
||||
return abs(sum_moments) < eps
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Test to check if it works
|
||||
forces = array(
|
||||
[
|
||||
polar_force(718.4, 180 - 30),
|
||||
polar_force(879.54, 45),
|
||||
polar_force(100, -90),
|
||||
]
|
||||
)
|
||||
|
||||
location: NDArray[float64] = array([[0, 0], [0, 0], [0, 0]])
|
||||
|
||||
assert in_static_equilibrium(forces, location)
|
||||
|
||||
# Problem 1 in image_data/2D_problems.jpg
|
||||
forces = array(
|
||||
[
|
||||
polar_force(30 * 9.81, 15),
|
||||
polar_force(215, 180 - 45),
|
||||
polar_force(264, 90 - 30),
|
||||
]
|
||||
)
|
||||
|
||||
location = array([[0, 0], [0, 0], [0, 0]])
|
||||
|
||||
assert in_static_equilibrium(forces, location)
|
||||
|
||||
# Problem in image_data/2D_problems_1.jpg
|
||||
forces = array([[0, -2000], [0, -1200], [0, 15600], [0, -12400]])
|
||||
|
||||
location = array([[0, 0], [6, 0], [10, 0], [12, 0]])
|
||||
|
||||
assert in_static_equilibrium(forces, location)
|
||||
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
||||
"""
|
||||
Checks if a system of forces is in static equilibrium.
|
||||
"""
|
||||
from __future__ import annotations
|
||||
|
||||
from numpy import array, cos, cross, float64, radians, sin
|
||||
from numpy.typing import NDArray
|
||||
|
||||
|
||||
def polar_force(
|
||||
magnitude: float, angle: float, radian_mode: bool = False
|
||||
) -> list[float]:
|
||||
"""
|
||||
Resolves force along rectangular components.
|
||||
(force, angle) => (force_x, force_y)
|
||||
>>> import math
|
||||
>>> force = polar_force(10, 45)
|
||||
>>> math.isclose(force[0], 7.071067811865477)
|
||||
True
|
||||
>>> math.isclose(force[1], 7.0710678118654755)
|
||||
True
|
||||
>>> force = polar_force(10, 3.14, radian_mode=True)
|
||||
>>> math.isclose(force[0], -9.999987317275396)
|
||||
True
|
||||
>>> math.isclose(force[1], 0.01592652916486828)
|
||||
True
|
||||
"""
|
||||
if radian_mode:
|
||||
return [magnitude * cos(angle), magnitude * sin(angle)]
|
||||
return [magnitude * cos(radians(angle)), magnitude * sin(radians(angle))]
|
||||
|
||||
|
||||
def in_static_equilibrium(
|
||||
forces: NDArray[float64], location: NDArray[float64], eps: float = 10**-1
|
||||
) -> bool:
|
||||
"""
|
||||
Check if a system is in equilibrium.
|
||||
It takes two numpy.array objects.
|
||||
forces ==> [
|
||||
[force1_x, force1_y],
|
||||
[force2_x, force2_y],
|
||||
....]
|
||||
location ==> [
|
||||
[x1, y1],
|
||||
[x2, y2],
|
||||
....]
|
||||
>>> force = array([[1, 1], [-1, 2]])
|
||||
>>> location = array([[1, 0], [10, 0]])
|
||||
>>> in_static_equilibrium(force, location)
|
||||
False
|
||||
"""
|
||||
# summation of moments is zero
|
||||
moments: NDArray[float64] = cross(location, forces)
|
||||
sum_moments: float = sum(moments)
|
||||
return abs(sum_moments) < eps
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Test to check if it works
|
||||
forces = array(
|
||||
[
|
||||
polar_force(718.4, 180 - 30),
|
||||
polar_force(879.54, 45),
|
||||
polar_force(100, -90),
|
||||
]
|
||||
)
|
||||
|
||||
location: NDArray[float64] = array([[0, 0], [0, 0], [0, 0]])
|
||||
|
||||
assert in_static_equilibrium(forces, location)
|
||||
|
||||
# Problem 1 in image_data/2D_problems.jpg
|
||||
forces = array(
|
||||
[
|
||||
polar_force(30 * 9.81, 15),
|
||||
polar_force(215, 180 - 45),
|
||||
polar_force(264, 90 - 30),
|
||||
]
|
||||
)
|
||||
|
||||
location = array([[0, 0], [0, 0], [0, 0]])
|
||||
|
||||
assert in_static_equilibrium(forces, location)
|
||||
|
||||
# Problem in image_data/2D_problems_1.jpg
|
||||
forces = array([[0, -2000], [0, -1200], [0, 15600], [0, -12400]])
|
||||
|
||||
location = array([[0, 0], [6, 0], [10, 0], [12, 0]])
|
||||
|
||||
assert in_static_equilibrium(forces, location)
|
||||
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
Loading…
Reference in New Issue
Block a user