mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 08:17:01 +00:00
XGB Regressor (#7107)
* Fixes: #{6551} * Fixes: #{6551} * Update xgboostclassifier.py * Delete xgboostclassifier.py * Update xgboostregressor.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fixes: #{6551} * Fixes : {#6551} * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fixes: {#6551] * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update xgboostregressor.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update xgboostregressor.py * Update xgboostregressor.py * Fixes: { #6551} * Update xgboostregressor.py * Fixes: { #6551} * Fixes: { #6551} * Update and rename xgboostregressor.py to xgboost_regressor.py Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Christian Clauss <cclauss@me.com>
This commit is contained in:
parent
1bbb0092f3
commit
b092f9979f
64
machine_learning/xgboost_regressor.py
Normal file
64
machine_learning/xgboost_regressor.py
Normal file
|
@ -0,0 +1,64 @@
|
|||
# XGBoost Regressor Example
|
||||
import numpy as np
|
||||
from sklearn.datasets import fetch_california_housing
|
||||
from sklearn.metrics import mean_absolute_error, mean_squared_error
|
||||
from sklearn.model_selection import train_test_split
|
||||
from xgboost import XGBRegressor
|
||||
|
||||
|
||||
def data_handling(data: dict) -> tuple:
|
||||
# Split dataset into features and target. Data is features.
|
||||
"""
|
||||
>>> data_handling((
|
||||
... {'data':'[ 8.3252 41. 6.9841269 1.02380952 322. 2.55555556 37.88 -122.23 ]'
|
||||
... ,'target':([4.526])}))
|
||||
('[ 8.3252 41. 6.9841269 1.02380952 322. 2.55555556 37.88 -122.23 ]', [4.526])
|
||||
"""
|
||||
return (data["data"], data["target"])
|
||||
|
||||
|
||||
def xgboost(
|
||||
features: np.ndarray, target: np.ndarray, test_features: np.ndarray
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
>>> xgboost(np.array([[ 2.3571 , 52. , 6.00813008, 1.06775068,
|
||||
... 907. , 2.45799458, 40.58 , -124.26]]),np.array([1.114]),
|
||||
... np.array([[1.97840000e+00, 3.70000000e+01, 4.98858447e+00, 1.03881279e+00,
|
||||
... 1.14300000e+03, 2.60958904e+00, 3.67800000e+01, -1.19780000e+02]]))
|
||||
array([[1.1139996]], dtype=float32)
|
||||
"""
|
||||
xgb = XGBRegressor(verbosity=0, random_state=42)
|
||||
xgb.fit(features, target)
|
||||
# Predict target for test data
|
||||
predictions = xgb.predict(test_features)
|
||||
predictions = predictions.reshape(len(predictions), 1)
|
||||
return predictions
|
||||
|
||||
|
||||
def main() -> None:
|
||||
"""
|
||||
>>> main()
|
||||
Mean Absolute Error : 0.30957163379906033
|
||||
Mean Square Error : 0.22611560196662744
|
||||
|
||||
The URL for this algorithm
|
||||
https://xgboost.readthedocs.io/en/stable/
|
||||
California house price dataset is used to demonstrate the algorithm.
|
||||
"""
|
||||
# Load California house price dataset
|
||||
california = fetch_california_housing()
|
||||
data, target = data_handling(california)
|
||||
x_train, x_test, y_train, y_test = train_test_split(
|
||||
data, target, test_size=0.25, random_state=1
|
||||
)
|
||||
predictions = xgboost(x_train, y_train, x_test)
|
||||
# Error printing
|
||||
print(f"Mean Absolute Error : {mean_absolute_error(y_test, predictions)}")
|
||||
print(f"Mean Square Error : {mean_squared_error(y_test, predictions)}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod(verbose=True)
|
||||
main()
|
Loading…
Reference in New Issue
Block a user