Added implementation for MSD radix sort algorithm based on binary representation (#4441)

* Added MSD radix sort algorithm

* Fixed typos

* Added doctests

* Added link to wikipedia

* Added doctest and improved code
This commit is contained in:
Tobias 2021-05-20 19:15:51 +00:00 committed by GitHub
parent 368ce7aecc
commit b11e5314b7
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

80
sorts/msd_radix_sort.py Normal file
View File

@ -0,0 +1,80 @@
"""
Python implementation of the MSD radix sort algorithm.
It used the binary representation of the integers to sort
them.
https://en.wikipedia.org/wiki/Radix_sort
"""
from typing import List
def msd_radix_sort(list_of_ints: List[int]) -> List[int]:
"""
Implementation of the MSD radix sort algorithm. Only works
with positive integers
:param list_of_ints: A list of integers
:return: Returns the sorted list
>>> msd_radix_sort([40, 12, 1, 100, 4])
[1, 4, 12, 40, 100]
>>> msd_radix_sort([])
[]
>>> msd_radix_sort([123, 345, 123, 80])
[80, 123, 123, 345]
>>> msd_radix_sort([1209, 834598, 1, 540402, 45])
[1, 45, 1209, 540402, 834598]
>>> msd_radix_sort([-1, 34, 45])
Traceback (most recent call last):
...
ValueError: All numbers must be positive
"""
if not list_of_ints:
return []
if min(list_of_ints) < 0:
raise ValueError("All numbers must be positive")
most_bits = max(len(bin(x)[2:]) for x in list_of_ints)
return _msd_radix_sort(list_of_ints, most_bits)
def _msd_radix_sort(list_of_ints: List[int], bit_position: int) -> List[int]:
"""
Sort the given list based on the bit at bit_position. Numbers with a
0 at that position will be at the start of the list, numbers with a
1 at the end.
:param list_of_ints: A list of integers
:param bit_position: the position of the bit that gets compared
:return: Returns a partially sorted list
>>> _msd_radix_sort([45, 2, 32], 1)
[2, 32, 45]
>>> _msd_radix_sort([10, 4, 12], 2)
[4, 12, 10]
"""
if bit_position == 0 or len(list_of_ints) in [0, 1]:
return list_of_ints
zeros = list()
ones = list()
# Split numbers based on bit at bit_position from the right
for number in list_of_ints:
if (number >> (bit_position - 1)) & 1:
# number has a one at bit bit_position
ones.append(number)
else:
# number has a zero at bit bit_position
zeros.append(number)
# recursively split both lists further
zeros = _msd_radix_sort(zeros, bit_position - 1)
ones = _msd_radix_sort(ones, bit_position - 1)
# recombine lists
res = zeros
res.extend(ones)
return res
if __name__ == "__main__":
import doctest
doctest.testmod()