mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-23 21:11:08 +00:00
Add solution for Project Euler problem 123 (#3072)
Name: Prime square remainders Let pn be the nth prime: 2, 3, 5, 7, 11, ..., and let r be the remainder when (pn−1)^n + (pn+1)^n is divided by pn^2. For example, when n = 3, p3 = 5, and 43 + 63 = 280 ≡ 5 mod 25. The least value of n for which the remainder first exceeds 10^9 is 7037. Find the least value of n for which the remainder first exceeds 10^10. Reference: https://projecteuler.net/problem=123 reference: #2695 Co-authored-by: Ravi Kandasamy Sundaram <rkandasamysundaram@luxoft.com>
This commit is contained in:
parent
fdba34f704
commit
c8db6a208b
0
project_euler/problem_123/__init__.py
Normal file
0
project_euler/problem_123/__init__.py
Normal file
99
project_euler/problem_123/sol1.py
Normal file
99
project_euler/problem_123/sol1.py
Normal file
|
@ -0,0 +1,99 @@
|
|||
"""
|
||||
Problem 123: https://projecteuler.net/problem=123
|
||||
|
||||
Name: Prime square remainders
|
||||
|
||||
Let pn be the nth prime: 2, 3, 5, 7, 11, ..., and
|
||||
let r be the remainder when (pn−1)^n + (pn+1)^n is divided by pn^2.
|
||||
|
||||
For example, when n = 3, p3 = 5, and 43 + 63 = 280 ≡ 5 mod 25.
|
||||
The least value of n for which the remainder first exceeds 10^9 is 7037.
|
||||
|
||||
Find the least value of n for which the remainder first exceeds 10^10.
|
||||
|
||||
|
||||
Solution:
|
||||
|
||||
n=1: (p-1) + (p+1) = 2p
|
||||
n=2: (p-1)^2 + (p+1)^2
|
||||
= p^2 + 1 - 2p + p^2 + 1 + 2p (Using (p+b)^2 = (p^2 + b^2 + 2pb),
|
||||
(p-b)^2 = (p^2 + b^2 - 2pb) and b = 1)
|
||||
= 2p^2 + 2
|
||||
n=3: (p-1)^3 + (p+1)^3 (Similarly using (p+b)^3 & (p-b)^3 formula and so on)
|
||||
= 2p^3 + 6p
|
||||
n=4: 2p^4 + 12p^2 + 2
|
||||
n=5: 2p^5 + 20p^3 + 10p
|
||||
|
||||
As you could see, when the expression is divided by p^2.
|
||||
Except for the last term, the rest will result in the remainder 0.
|
||||
|
||||
n=1: 2p
|
||||
n=2: 2
|
||||
n=3: 6p
|
||||
n=4: 2
|
||||
n=5: 10p
|
||||
|
||||
So it could be simplified as,
|
||||
r = 2pn when n is odd
|
||||
r = 2 when n is even.
|
||||
"""
|
||||
|
||||
from typing import Dict, Generator
|
||||
|
||||
|
||||
def sieve() -> Generator[int, None, None]:
|
||||
"""
|
||||
Returns a prime number generator using sieve method.
|
||||
>>> type(sieve())
|
||||
<class 'generator'>
|
||||
>>> primes = sieve()
|
||||
>>> next(primes)
|
||||
2
|
||||
>>> next(primes)
|
||||
3
|
||||
>>> next(primes)
|
||||
5
|
||||
>>> next(primes)
|
||||
7
|
||||
>>> next(primes)
|
||||
11
|
||||
>>> next(primes)
|
||||
13
|
||||
"""
|
||||
factor_map: Dict[int, int] = {}
|
||||
prime = 2
|
||||
while True:
|
||||
factor = factor_map.pop(prime, None)
|
||||
if factor:
|
||||
x = factor + prime
|
||||
while x in factor_map:
|
||||
x += factor
|
||||
factor_map[x] = factor
|
||||
else:
|
||||
factor_map[prime * prime] = prime
|
||||
yield prime
|
||||
prime += 1
|
||||
|
||||
|
||||
def solution(limit: float = 1e10) -> int:
|
||||
"""
|
||||
Returns the least value of n for which the remainder first exceeds 10^10.
|
||||
>>> solution(1e8)
|
||||
2371
|
||||
>>> solution(1e9)
|
||||
7037
|
||||
"""
|
||||
primes = sieve()
|
||||
|
||||
n = 1
|
||||
while True:
|
||||
prime = next(primes)
|
||||
if (2 * prime * n) > limit:
|
||||
return n
|
||||
# Ignore the next prime as the reminder will be 2.
|
||||
next(primes)
|
||||
n += 2
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(solution())
|
Loading…
Reference in New Issue
Block a user