add Bilinear- and Bicubic-Interpolation

This commit is contained in:
Simon Waldherr 2024-10-24 21:27:26 +02:00
parent 6e24935f88
commit d56ed3595e

View File

@ -1,6 +1,7 @@
"""Multiple image resizing techniques""" """Multiple image resizing techniques"""
import numpy as np import numpy as np
import cv2
from cv2 import destroyAllWindows, imread, imshow, waitKey from cv2 import destroyAllWindows, imread, imshow, waitKey
@ -59,14 +60,115 @@ class NearestNeighbour:
return int(self.ratio_y * y) return int(self.ratio_y * y)
class BilinearInterpolation:
"""
Bilinear interpolation for image resizing.
Source: https://en.wikipedia.org/wiki/Bilinear_interpolation
"""
def __init__(self, img, dst_width: int, dst_height: int):
if dst_width < 0 or dst_height < 0:
raise ValueError("Destination width/height should be > 0")
self.img = img
self.src_w = img.shape[1]
self.src_h = img.shape[0]
self.dst_w = dst_width
self.dst_h = dst_height
self.ratio_x = self.src_w / self.dst_w
self.ratio_y = self.src_h / self.dst_h
self.output = np.ones((self.dst_h, self.dst_w, 3), np.uint8) * 255
def process(self):
for i in range(self.dst_h):
for j in range(self.dst_w):
x = self.ratio_x * j
y = self.ratio_y * i
x1, y1 = int(x), int(y)
x2, y2 = min(x1 + 1, self.src_w - 1), min(y1 + 1, self.src_h - 1)
a = x - x1
b = y - y1
top = (1 - a) * self.img[y1][x1] + a * self.img[y1][x2]
bottom = (1 - a) * self.img[y2][x1] + a * self.img[y2][x2]
self.output[i][j] = (1 - b) * top + b * bottom
class BicubicInterpolation:
"""
Bicubic interpolation for image resizing.
Source: https://en.wikipedia.org/wiki/Bicubic_interpolation
"""
def __init__(self, img, dst_width: int, dst_height: int):
if dst_width < 0 or dst_height < 0:
raise ValueError("Destination width/height should be > 0")
self.img = img
self.src_w = img.shape[1]
self.src_h = img.shape[0]
self.dst_w = dst_width
self.dst_h = dst_height
self.ratio_x = self.src_w / self.dst_w
self.ratio_y = self.src_h / self.dst_h
self.output = np.ones((self.dst_h, self.dst_w, 3), np.uint8) * 255
def cubic(self, x):
abs_x = abs(x)
if abs_x <= 1:
return 1.5 * abs_x**3 - 2.5 * abs_x**2 + 1
elif abs_x < 2:
return -0.5 * abs_x**3 + 2.5 * abs_x**2 - 4 * abs_x + 2
else:
return 0
def interpolate(self, x, y, channel):
x1 = int(x)
y1 = int(y)
total = 0.0
for m in range(-1, 3):
for n in range(-1, 3):
xm = min(max(x1 + m, 0), self.src_w - 1)
yn = min(max(y1 + n, 0), self.src_h - 1)
weight = self.cubic(m - (x - x1)) * self.cubic(n - (y - y1))
total += self.img[yn, xm, channel] * weight
return np.clip(total, 0, 255)
def process(self):
for i in range(self.dst_h):
for j in range(self.dst_w):
x = self.ratio_x * j
y = self.ratio_y * i
for c in range(3): # For each color channel (R, G, B)
self.output[i, j, c] = self.interpolate(x, y, c)
if __name__ == "__main__": if __name__ == "__main__":
dst_w, dst_h = 800, 600 dst_w, dst_h = 800, 600
im = imread("image_data/lena.jpg", 1) im = imread("image_data/lena.jpg", 1)
n = NearestNeighbour(im, dst_w, dst_h)
n.process()
imshow( # Nearest Neighbour
f"Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}", n.output nn = NearestNeighbour(im, dst_w, dst_h)
) nn.process()
imshow(f"Nearest Neighbor: {dst_w}x{dst_h}", nn.output)
waitKey(0) waitKey(0)
# Bilinear Interpolation
bi = BilinearInterpolation(im, dst_w, dst_h)
bi.process()
imshow(f"Bilinear Interpolation: {dst_w}x{dst_h}", bi.output)
waitKey(0)
# Bicubic Interpolation
bc = BicubicInterpolation(im, dst_w, dst_h)
bc.process()
imshow(f"Bicubic Interpolation: {dst_w}x{dst_h}", bc.output)
waitKey(0)
destroyAllWindows() destroyAllWindows()