mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-04-05 13:26:43 +00:00
175 lines
5.3 KiB
Python
175 lines
5.3 KiB
Python
"""Multiple image resizing techniques"""
|
|
|
|
import numpy as np
|
|
import cv2
|
|
from cv2 import destroyAllWindows, imread, imshow, waitKey
|
|
|
|
|
|
class NearestNeighbour:
|
|
"""
|
|
Simplest and fastest version of image resizing.
|
|
Source: https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
|
|
"""
|
|
|
|
def __init__(self, img, dst_width: int, dst_height: int):
|
|
if dst_width < 0 or dst_height < 0:
|
|
raise ValueError("Destination width/height should be > 0")
|
|
|
|
self.img = img
|
|
self.src_w = img.shape[1]
|
|
self.src_h = img.shape[0]
|
|
self.dst_w = dst_width
|
|
self.dst_h = dst_height
|
|
|
|
self.ratio_x = self.src_w / self.dst_w
|
|
self.ratio_y = self.src_h / self.dst_h
|
|
|
|
self.output = self.output_img = (
|
|
np.ones((self.dst_h, self.dst_w, 3), np.uint8) * 255
|
|
)
|
|
|
|
def process(self):
|
|
for i in range(self.dst_h):
|
|
for j in range(self.dst_w):
|
|
self.output[i][j] = self.img[self.get_y(i)][self.get_x(j)]
|
|
|
|
def get_x(self, x: int) -> int:
|
|
"""
|
|
Get parent X coordinate for destination X
|
|
:param x: Destination X coordinate
|
|
:return: Parent X coordinate based on `x ratio`
|
|
>>> nn = NearestNeighbour(imread("digital_image_processing/image_data/lena.jpg",
|
|
... 1), 100, 100)
|
|
>>> nn.ratio_x = 0.5
|
|
>>> nn.get_x(4)
|
|
2
|
|
"""
|
|
return int(self.ratio_x * x)
|
|
|
|
def get_y(self, y: int) -> int:
|
|
"""
|
|
Get parent Y coordinate for destination Y
|
|
:param y: Destination X coordinate
|
|
:return: Parent X coordinate based on `y ratio`
|
|
>>> nn = NearestNeighbour(imread("digital_image_processing/image_data/lena.jpg",
|
|
... 1), 100, 100)
|
|
>>> nn.ratio_y = 0.5
|
|
>>> nn.get_y(4)
|
|
2
|
|
"""
|
|
return int(self.ratio_y * y)
|
|
|
|
|
|
class BilinearInterpolation:
|
|
"""
|
|
Bilinear interpolation for image resizing.
|
|
Source: https://en.wikipedia.org/wiki/Bilinear_interpolation
|
|
"""
|
|
|
|
def __init__(self, img, dst_width: int, dst_height: int):
|
|
if dst_width < 0 or dst_height < 0:
|
|
raise ValueError("Destination width/height should be > 0")
|
|
|
|
self.img = img
|
|
self.src_w = img.shape[1]
|
|
self.src_h = img.shape[0]
|
|
self.dst_w = dst_width
|
|
self.dst_h = dst_height
|
|
|
|
self.ratio_x = self.src_w / self.dst_w
|
|
self.ratio_y = self.src_h / self.dst_h
|
|
|
|
self.output = np.ones((self.dst_h, self.dst_w, 3), np.uint8) * 255
|
|
|
|
def process(self):
|
|
for i in range(self.dst_h):
|
|
for j in range(self.dst_w):
|
|
x = self.ratio_x * j
|
|
y = self.ratio_y * i
|
|
|
|
x1, y1 = int(x), int(y)
|
|
x2, y2 = min(x1 + 1, self.src_w - 1), min(y1 + 1, self.src_h - 1)
|
|
|
|
a = x - x1
|
|
b = y - y1
|
|
|
|
top = (1 - a) * self.img[y1][x1] + a * self.img[y1][x2]
|
|
bottom = (1 - a) * self.img[y2][x1] + a * self.img[y2][x2]
|
|
self.output[i][j] = (1 - b) * top + b * bottom
|
|
|
|
|
|
class BicubicInterpolation:
|
|
"""
|
|
Bicubic interpolation for image resizing.
|
|
Source: https://en.wikipedia.org/wiki/Bicubic_interpolation
|
|
"""
|
|
|
|
def __init__(self, img, dst_width: int, dst_height: int):
|
|
if dst_width < 0 or dst_height < 0:
|
|
raise ValueError("Destination width/height should be > 0")
|
|
|
|
self.img = img
|
|
self.src_w = img.shape[1]
|
|
self.src_h = img.shape[0]
|
|
self.dst_w = dst_width
|
|
self.dst_h = dst_height
|
|
|
|
self.ratio_x = self.src_w / self.dst_w
|
|
self.ratio_y = self.src_h / self.dst_h
|
|
|
|
self.output = np.ones((self.dst_h, self.dst_w, 3), np.uint8) * 255
|
|
|
|
def cubic(self, x):
|
|
abs_x = abs(x)
|
|
if abs_x <= 1:
|
|
return 1.5 * abs_x**3 - 2.5 * abs_x**2 + 1
|
|
elif abs_x < 2:
|
|
return -0.5 * abs_x**3 + 2.5 * abs_x**2 - 4 * abs_x + 2
|
|
else:
|
|
return 0
|
|
|
|
def interpolate(self, x, y, channel):
|
|
x1 = int(x)
|
|
y1 = int(y)
|
|
total = 0.0
|
|
for m in range(-1, 3):
|
|
for n in range(-1, 3):
|
|
xm = min(max(x1 + m, 0), self.src_w - 1)
|
|
yn = min(max(y1 + n, 0), self.src_h - 1)
|
|
weight = self.cubic(m - (x - x1)) * self.cubic(n - (y - y1))
|
|
total += self.img[yn, xm, channel] * weight
|
|
return np.clip(total, 0, 255)
|
|
|
|
def process(self):
|
|
for i in range(self.dst_h):
|
|
for j in range(self.dst_w):
|
|
x = self.ratio_x * j
|
|
y = self.ratio_y * i
|
|
for c in range(3): # For each color channel (R, G, B)
|
|
self.output[i, j, c] = self.interpolate(x, y, c)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
dst_w, dst_h = 800, 600
|
|
im = imread("image_data/lena.jpg", 1)
|
|
|
|
# Nearest Neighbour
|
|
nn = NearestNeighbour(im, dst_w, dst_h)
|
|
nn.process()
|
|
imshow(f"Nearest Neighbor: {dst_w}x{dst_h}", nn.output)
|
|
waitKey(0)
|
|
|
|
# Bilinear Interpolation
|
|
bi = BilinearInterpolation(im, dst_w, dst_h)
|
|
bi.process()
|
|
imshow(f"Bilinear Interpolation: {dst_w}x{dst_h}", bi.output)
|
|
waitKey(0)
|
|
|
|
# Bicubic Interpolation
|
|
bc = BicubicInterpolation(im, dst_w, dst_h)
|
|
bc.process()
|
|
imshow(f"Bicubic Interpolation: {dst_w}x{dst_h}", bc.output)
|
|
waitKey(0)
|
|
|
|
destroyAllWindows()
|