mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 08:17:01 +00:00
perf: improve Project Euler problem 203 solution 1 (#6279)
Improve solution (locally 1500+ times - from 3+ seconds to ~2 milliseconds) Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
This commit is contained in:
parent
97f25d4b43
commit
defc205ef4
|
@ -29,8 +29,6 @@ References:
|
|||
"""
|
||||
from __future__ import annotations
|
||||
|
||||
import math
|
||||
|
||||
|
||||
def get_pascal_triangle_unique_coefficients(depth: int) -> set[int]:
|
||||
"""
|
||||
|
@ -61,76 +59,9 @@ def get_pascal_triangle_unique_coefficients(depth: int) -> set[int]:
|
|||
return coefficients
|
||||
|
||||
|
||||
def get_primes_squared(max_number: int) -> list[int]:
|
||||
def get_squarefrees(unique_coefficients: set[int]) -> set[int]:
|
||||
"""
|
||||
Calculates all primes between 2 and round(sqrt(max_number)) and returns
|
||||
them squared up.
|
||||
|
||||
>>> get_primes_squared(2)
|
||||
[]
|
||||
>>> get_primes_squared(4)
|
||||
[4]
|
||||
>>> get_primes_squared(10)
|
||||
[4, 9]
|
||||
>>> get_primes_squared(100)
|
||||
[4, 9, 25, 49]
|
||||
"""
|
||||
max_prime = math.isqrt(max_number)
|
||||
non_primes = [False] * (max_prime + 1)
|
||||
primes = []
|
||||
for num in range(2, max_prime + 1):
|
||||
if non_primes[num]:
|
||||
continue
|
||||
|
||||
for num_counter in range(num**2, max_prime + 1, num):
|
||||
non_primes[num_counter] = True
|
||||
|
||||
primes.append(num**2)
|
||||
return primes
|
||||
|
||||
|
||||
def get_squared_primes_to_use(
|
||||
num_to_look: int, squared_primes: list[int], previous_index: int
|
||||
) -> int:
|
||||
"""
|
||||
Returns an int indicating the last index on which squares of primes
|
||||
in primes are lower than num_to_look.
|
||||
|
||||
This method supposes that squared_primes is sorted in ascending order and that
|
||||
each num_to_look is provided in ascending order as well. Under these
|
||||
assumptions, it needs a previous_index parameter that tells what was
|
||||
the index returned by the method for the previous num_to_look.
|
||||
|
||||
If all the elements in squared_primes are greater than num_to_look, then the
|
||||
method returns -1.
|
||||
|
||||
>>> get_squared_primes_to_use(1, [4, 9, 16, 25], 0)
|
||||
-1
|
||||
>>> get_squared_primes_to_use(4, [4, 9, 16, 25], 0)
|
||||
1
|
||||
>>> get_squared_primes_to_use(16, [4, 9, 16, 25], 1)
|
||||
3
|
||||
"""
|
||||
idx = max(previous_index, 0)
|
||||
|
||||
while idx < len(squared_primes) and squared_primes[idx] <= num_to_look:
|
||||
idx += 1
|
||||
|
||||
if idx == 0 and squared_primes[idx] > num_to_look:
|
||||
return -1
|
||||
|
||||
if idx == len(squared_primes) and squared_primes[-1] > num_to_look:
|
||||
return -1
|
||||
|
||||
return idx
|
||||
|
||||
|
||||
def get_squarefree(
|
||||
unique_coefficients: set[int], squared_primes: list[int]
|
||||
) -> set[int]:
|
||||
"""
|
||||
Calculates the squarefree numbers inside unique_coefficients given a
|
||||
list of square of primes.
|
||||
Calculates the squarefree numbers inside unique_coefficients.
|
||||
|
||||
Based on the definition of a non-squarefree number, then any non-squarefree
|
||||
n can be decomposed as n = p*p*r, where p is positive prime number and r
|
||||
|
@ -140,27 +71,27 @@ def get_squarefree(
|
|||
squarefree as r cannot be negative. On the contrary, if any r exists such
|
||||
that n = p*p*r, then the number is non-squarefree.
|
||||
|
||||
>>> get_squarefree({1}, [])
|
||||
set()
|
||||
>>> get_squarefree({1, 2}, [])
|
||||
set()
|
||||
>>> get_squarefree({1, 2, 3, 4, 5, 6, 7, 35, 10, 15, 20, 21}, [4, 9, 25])
|
||||
>>> get_squarefrees({1})
|
||||
{1}
|
||||
>>> get_squarefrees({1, 2})
|
||||
{1, 2}
|
||||
>>> get_squarefrees({1, 2, 3, 4, 5, 6, 7, 35, 10, 15, 20, 21})
|
||||
{1, 2, 3, 5, 6, 7, 35, 10, 15, 21}
|
||||
"""
|
||||
|
||||
if len(squared_primes) == 0:
|
||||
return set()
|
||||
|
||||
non_squarefrees = set()
|
||||
prime_squared_idx = 0
|
||||
for num in sorted(unique_coefficients):
|
||||
prime_squared_idx = get_squared_primes_to_use(
|
||||
num, squared_primes, prime_squared_idx
|
||||
)
|
||||
if prime_squared_idx == -1:
|
||||
continue
|
||||
if any(num % prime == 0 for prime in squared_primes[:prime_squared_idx]):
|
||||
non_squarefrees.add(num)
|
||||
for number in unique_coefficients:
|
||||
divisor = 2
|
||||
copy_number = number
|
||||
while divisor**2 <= copy_number:
|
||||
multiplicity = 0
|
||||
while copy_number % divisor == 0:
|
||||
copy_number //= divisor
|
||||
multiplicity += 1
|
||||
if multiplicity >= 2:
|
||||
non_squarefrees.add(number)
|
||||
break
|
||||
divisor += 1
|
||||
|
||||
return unique_coefficients.difference(non_squarefrees)
|
||||
|
||||
|
@ -170,15 +101,14 @@ def solution(n: int = 51) -> int:
|
|||
Returns the sum of squarefrees for a given Pascal's Triangle of depth n.
|
||||
|
||||
>>> solution(1)
|
||||
0
|
||||
1
|
||||
>>> solution(8)
|
||||
105
|
||||
>>> solution(9)
|
||||
175
|
||||
"""
|
||||
unique_coefficients = get_pascal_triangle_unique_coefficients(n)
|
||||
primes = get_primes_squared(max(unique_coefficients))
|
||||
squarefrees = get_squarefree(unique_coefficients, primes)
|
||||
squarefrees = get_squarefrees(unique_coefficients)
|
||||
return sum(squarefrees)
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user