mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-27 15:01:08 +00:00
* add type hints to math/extended euclid * math/extended euclid - add doctest * math/extended euclid: remove manual doctest * change algorithm for negative numbers * improve naming of variables * Update extended_euclidean_algorithm.py Co-authored-by: Dhruv <dhruvmanila@gmail.com>
This commit is contained in:
parent
a5000d32ed
commit
e41d04112f
|
@ -3,59 +3,72 @@ Extended Euclidean Algorithm.
|
|||
|
||||
Finds 2 numbers a and b such that it satisfies
|
||||
the equation am + bn = gcd(m, n) (a.k.a Bezout's Identity)
|
||||
|
||||
https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
|
||||
"""
|
||||
|
||||
# @Author: S. Sharma <silentcat>
|
||||
# @Date: 2019-02-25T12:08:53-06:00
|
||||
# @Email: silentcat@protonmail.com
|
||||
# @Last modified by: PatOnTheBack
|
||||
# @Last modified time: 2019-07-05
|
||||
# @Last modified by: pikulet
|
||||
# @Last modified time: 2020-10-02
|
||||
|
||||
import sys
|
||||
from typing import Tuple
|
||||
|
||||
|
||||
def extended_euclidean_algorithm(m, n):
|
||||
def extended_euclidean_algorithm(a: int, b: int) -> Tuple[int, int]:
|
||||
"""
|
||||
Extended Euclidean Algorithm.
|
||||
|
||||
Finds 2 numbers a and b such that it satisfies
|
||||
the equation am + bn = gcd(m, n) (a.k.a Bezout's Identity)
|
||||
|
||||
>>> extended_euclidean_algorithm(1, 24)
|
||||
(1, 0)
|
||||
|
||||
>>> extended_euclidean_algorithm(8, 14)
|
||||
(2, -1)
|
||||
|
||||
>>> extended_euclidean_algorithm(240, 46)
|
||||
(-9, 47)
|
||||
|
||||
>>> extended_euclidean_algorithm(1, -4)
|
||||
(1, 0)
|
||||
|
||||
>>> extended_euclidean_algorithm(-2, -4)
|
||||
(-1, 0)
|
||||
|
||||
>>> extended_euclidean_algorithm(0, -4)
|
||||
(0, -1)
|
||||
|
||||
>>> extended_euclidean_algorithm(2, 0)
|
||||
(1, 0)
|
||||
|
||||
"""
|
||||
a = 0
|
||||
a_prime = 1
|
||||
b = 1
|
||||
b_prime = 0
|
||||
q = 0
|
||||
r = 0
|
||||
if m > n:
|
||||
c = m
|
||||
d = n
|
||||
else:
|
||||
c = n
|
||||
d = m
|
||||
# base cases
|
||||
if abs(a) == 1:
|
||||
return a, 0
|
||||
elif abs(b) == 1:
|
||||
return 0, b
|
||||
|
||||
while True:
|
||||
q = int(c / d)
|
||||
r = c % d
|
||||
if r == 0:
|
||||
break
|
||||
c = d
|
||||
d = r
|
||||
old_remainder, remainder = a, b
|
||||
old_coeff_a, coeff_a = 1, 0
|
||||
old_coeff_b, coeff_b = 0, 1
|
||||
|
||||
t = a_prime
|
||||
a_prime = a
|
||||
a = t - q * a
|
||||
while remainder != 0:
|
||||
quotient = old_remainder // remainder
|
||||
old_remainder, remainder = remainder, old_remainder - quotient * remainder
|
||||
old_coeff_a, coeff_a = coeff_a, old_coeff_a - quotient * coeff_a
|
||||
old_coeff_b, coeff_b = coeff_b, old_coeff_b - quotient * coeff_b
|
||||
|
||||
t = b_prime
|
||||
b_prime = b
|
||||
b = t - q * b
|
||||
# sign correction for negative numbers
|
||||
if a < 0:
|
||||
old_coeff_a = -old_coeff_a
|
||||
if b < 0:
|
||||
old_coeff_b = -old_coeff_b
|
||||
|
||||
pair = None
|
||||
if m > n:
|
||||
pair = (a, b)
|
||||
else:
|
||||
pair = (b, a)
|
||||
return pair
|
||||
return old_coeff_a, old_coeff_b
|
||||
|
||||
|
||||
def main():
|
||||
|
@ -63,9 +76,9 @@ def main():
|
|||
if len(sys.argv) < 3:
|
||||
print("2 integer arguments required")
|
||||
exit(1)
|
||||
m = int(sys.argv[1])
|
||||
n = int(sys.argv[2])
|
||||
print(extended_euclidean_algorithm(m, n))
|
||||
a = int(sys.argv[1])
|
||||
b = int(sys.argv[2])
|
||||
print(extended_euclidean_algorithm(a, b))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
Loading…
Reference in New Issue
Block a user