Binary Search Tree Inorder Traversal Algorithm (#6840)

* Binary Search Tree Inorder Traversal

* updating DIRECTORY.md

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Binary Search Tree Inorder Traversal v2

* Binary Search Tree Inorder Traversal

* Binary Search Tree Inorder Traversal

* Update inorder_tree_traversal_2022.py

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update inorder_tree_traversal_2022.py

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update inorder_tree_traversal_2022.py

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update data_structures/binary_tree/inorder_tree_traversal_2022.py

* Update data_structures/binary_tree/inorder_tree_traversal_2022.py

* Updated

* Updated

* Update inorder_tree_traversal_2022.py

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update inorder_tree_traversal_2022.py

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update data_structures/binary_tree/inorder_tree_traversal_2022.py

Co-authored-by: Christian Clauss <cclauss@me.com>

* Updated and removed print statement

removed the print from inorder function

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Christian Clauss <cclauss@me.com>
This commit is contained in:
GURNEET SINGH 2022-10-13 17:39:01 +05:30 committed by GitHub
parent c73cb7e3f7
commit e661b98829
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 84 additions and 0 deletions

View File

@ -153,6 +153,7 @@
* [Binary Tree Mirror](data_structures/binary_tree/binary_tree_mirror.py)
* [Binary Tree Traversals](data_structures/binary_tree/binary_tree_traversals.py)
* [Fenwick Tree](data_structures/binary_tree/fenwick_tree.py)
* [Inorder Tree Traversal 2022](data_structures/binary_tree/inorder_tree_traversal_2022.py)
* [Lazy Segment Tree](data_structures/binary_tree/lazy_segment_tree.py)
* [Lowest Common Ancestor](data_structures/binary_tree/lowest_common_ancestor.py)
* [Maximum Fenwick Tree](data_structures/binary_tree/maximum_fenwick_tree.py)

View File

@ -0,0 +1,83 @@
"""
Illustrate how to implement inorder traversal in binary search tree.
Author: Gurneet Singh
https://www.geeksforgeeks.org/tree-traversals-inorder-preorder-and-postorder/
"""
class BinaryTreeNode:
"""Defining the structure of BinaryTreeNode"""
def __init__(self, data: int) -> None:
self.data = data
self.left_child: BinaryTreeNode | None = None
self.right_child: BinaryTreeNode | None = None
def insert(node: BinaryTreeNode | None, new_value: int) -> BinaryTreeNode | None:
"""
If the binary search tree is empty, make a new node and declare it as root.
>>> node_a = BinaryTreeNode(12345)
>>> node_b = insert(node_a, 67890)
>>> node_a.left_child == node_b.left_child
True
>>> node_a.right_child == node_b.right_child
True
>>> node_a.data == node_b.data
True
"""
if node is None:
node = BinaryTreeNode(new_value)
return node
# binary search tree is not empty,
# so we will insert it into the tree
# if new_value is less than value of data in node,
# add it to left subtree and proceed recursively
if new_value < node.data:
node.left_child = insert(node.left_child, new_value)
else:
# if new_value is greater than value of data in node,
# add it to right subtree and proceed recursively
node.right_child = insert(node.right_child, new_value)
return node
def inorder(node: None | BinaryTreeNode) -> list[int]: # if node is None,return
"""
>>> inorder(make_tree())
[6, 10, 14, 15, 20, 25, 60]
"""
if node:
inorder_array = inorder(node.left_child)
inorder_array = inorder_array + [node.data]
inorder_array = inorder_array + inorder(node.right_child)
else:
inorder_array = []
return inorder_array
def make_tree() -> BinaryTreeNode | None:
root = insert(None, 15)
insert(root, 10)
insert(root, 25)
insert(root, 6)
insert(root, 14)
insert(root, 20)
insert(root, 60)
return root
def main() -> None:
# main function
root = make_tree()
print("Printing values of binary search tree in Inorder Traversal.")
inorder(root)
if __name__ == "__main__":
import doctest
doctest.testmod()
main()