mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 16:27:02 +00:00
Merge branch 'master' of git://github.com/SafariGit/Python into SafariGit-master
This commit is contained in:
commit
eb5ccd5bda
438
graphs/Directed and Undirected (Weighted) Graph
Normal file
438
graphs/Directed and Undirected (Weighted) Graph
Normal file
|
@ -0,0 +1,438 @@
|
|||
from collections import deque
|
||||
import random as rand
|
||||
import math as math
|
||||
|
||||
# the dfault weight is 1 if not assigend but all the implementation is weighted
|
||||
|
||||
class DirectedGraph:
|
||||
def __init__(self):
|
||||
self.graph = {}
|
||||
|
||||
# adding vertices and edges
|
||||
# adding the weight is optional
|
||||
# handels repetition
|
||||
def add_pair(self, u, v, w = 1):
|
||||
if self.graph.get(u):
|
||||
if self.graph[u].count([w,v]) == 0:
|
||||
self.graph[u].append([w, v])
|
||||
else:
|
||||
self.graph[u] = [[w, v]]
|
||||
if not self.graph.get(v):
|
||||
self.graph[v] = []
|
||||
|
||||
# handels if the input does not exist
|
||||
def remove_pair(self, u, v):
|
||||
if self.graph.get(u):
|
||||
for _ in self.graph[u]:
|
||||
if _[1] == v:
|
||||
self.graph[u].remove(_)
|
||||
|
||||
# if no destination is meant the defaut value is -1
|
||||
def dfs(self, s = -2, d = -1):
|
||||
if s == d:
|
||||
return []
|
||||
stack = []
|
||||
visited = []
|
||||
if s == -2:
|
||||
s = list(self.graph.keys())[0]
|
||||
stack.append(s)
|
||||
visited.append(s)
|
||||
ss = s
|
||||
|
||||
while True:
|
||||
# check if there is any non isolated nodes
|
||||
if len(self.graph[s]) != 0:
|
||||
ss = s
|
||||
for __ in self.graph[s]:
|
||||
if visited.count(__[1]) < 1:
|
||||
if __[1] == d:
|
||||
visited.append(d)
|
||||
return visited
|
||||
else:
|
||||
stack.append(__[1])
|
||||
visited.append(__[1])
|
||||
ss =__[1]
|
||||
break
|
||||
|
||||
# check if all the children are visited
|
||||
if s == ss :
|
||||
stack.pop()
|
||||
if len(stack) != 0:
|
||||
s = stack[len(stack) - 1]
|
||||
else:
|
||||
s = ss
|
||||
|
||||
# check if se have reached the starting point
|
||||
if len(stack) == 0:
|
||||
return visited
|
||||
|
||||
# c is the count of nodes you want and if you leave it or pass -1 to the funtion the count
|
||||
# will be random from 10 to 10000
|
||||
def fill_graph_randomly(self, c = -1):
|
||||
if c == -1:
|
||||
c = (math.floor(rand.random() * 10000)) + 10
|
||||
for _ in range(c):
|
||||
# every vertex has max 100 edges
|
||||
e = math.floor(rand.random() * 102) + 1
|
||||
for __ in range(e):
|
||||
n = math.floor(rand.random() * (c)) + 1
|
||||
if n == _:
|
||||
continue
|
||||
self.add_pair(_, n, 1)
|
||||
|
||||
def bfs(self, s = -2):
|
||||
d = deque()
|
||||
visited = []
|
||||
if s == -2:
|
||||
s = list(self.graph.keys())[0]
|
||||
d.append(s)
|
||||
visited.append(s)
|
||||
while d:
|
||||
s = d.popleft()
|
||||
if len(self.graph[s]) != 0:
|
||||
for __ in self.graph[s]:
|
||||
if visited.count(__[1]) < 1:
|
||||
d.append(__[1])
|
||||
visited.append(__[1])
|
||||
return visited
|
||||
def in_degree(self, u):
|
||||
count = 0
|
||||
for _ in self.graph:
|
||||
for __ in self.graph[_]:
|
||||
if __[1] == u:
|
||||
count += 1
|
||||
return count
|
||||
|
||||
def out_degree(self, u):
|
||||
return len(self.graph[u])
|
||||
|
||||
def topological_sort(self, s = -2):
|
||||
stack = []
|
||||
visited = []
|
||||
if s == -2:
|
||||
s = list(self.graph.keys())[0]
|
||||
stack.append(s)
|
||||
visited.append(s)
|
||||
ss = s
|
||||
sorted_nodes = []
|
||||
|
||||
while True:
|
||||
# check if there is any non isolated nodes
|
||||
if len(self.graph[s]) != 0:
|
||||
ss = s
|
||||
for __ in self.graph[s]:
|
||||
if visited.count(__[1]) < 1:
|
||||
stack.append(__[1])
|
||||
visited.append(__[1])
|
||||
ss =__[1]
|
||||
break
|
||||
|
||||
# check if all the children are visited
|
||||
if s == ss :
|
||||
sorted_nodes.append(stack.pop())
|
||||
if len(stack) != 0:
|
||||
s = stack[len(stack) - 1]
|
||||
else:
|
||||
s = ss
|
||||
|
||||
# check if se have reached the starting point
|
||||
if len(stack) == 0:
|
||||
return sorted_nodes
|
||||
|
||||
def cycle_nodes(self):
|
||||
stack = []
|
||||
visited = []
|
||||
s = list(self.graph.keys())[0]
|
||||
stack.append(s)
|
||||
visited.append(s)
|
||||
parent = -2
|
||||
indirect_parents = []
|
||||
ss = s
|
||||
anticipating_nodes = set()
|
||||
|
||||
while True:
|
||||
# check if there is any non isolated nodes
|
||||
if len(self.graph[s]) != 0:
|
||||
ss = s
|
||||
for __ in self.graph[s]:
|
||||
if visited.count(__[1]) > 0 and __[1] != parent and indirect_parents.count(__[1]) > 0 and not on_the_way_back:
|
||||
l = len(stack) - 1
|
||||
while True and l >= 0:
|
||||
if stack[l] == __[1]:
|
||||
anticipating_nodes.add(__[1])
|
||||
break
|
||||
else:
|
||||
anticipating_nodes.add(stack[l])
|
||||
l -= 1
|
||||
if visited.count(__[1]) < 1:
|
||||
stack.append(__[1])
|
||||
visited.append(__[1])
|
||||
ss =__[1]
|
||||
break
|
||||
|
||||
# check if all the children are visited
|
||||
if s == ss :
|
||||
stack.pop()
|
||||
on_the_way_back = True
|
||||
if len(stack) != 0:
|
||||
s = stack[len(stack) - 1]
|
||||
else:
|
||||
on_the_way_back = False
|
||||
indirect_parents.append(parent)
|
||||
parent = s
|
||||
s = ss
|
||||
|
||||
# check if se have reached the starting point
|
||||
if len(stack) == 0:
|
||||
return list(anticipating_nodes)
|
||||
|
||||
def has_cycle(self):
|
||||
stack = []
|
||||
visited = []
|
||||
s = list(self.graph.keys())[0]
|
||||
stack.append(s)
|
||||
visited.append(s)
|
||||
parent = -2
|
||||
indirect_parents = []
|
||||
ss = s
|
||||
anticipating_nodes = set()
|
||||
|
||||
while True:
|
||||
# check if there is any non isolated nodes
|
||||
if len(self.graph[s]) != 0:
|
||||
ss = s
|
||||
for __ in self.graph[s]:
|
||||
if visited.count(__[1]) > 0 and __[1] != parent and indirect_parents.count(__[1]) > 0 and not on_the_way_back:
|
||||
l = len(stack) - 1
|
||||
while True and l >= 0:
|
||||
if stack[l] == __[1]:
|
||||
anticipating_nodes.add(__[1])
|
||||
break
|
||||
else:
|
||||
return True
|
||||
anticipating_nodes.add(stack[l])
|
||||
l -= 1
|
||||
if visited.count(__[1]) < 1:
|
||||
stack.append(__[1])
|
||||
visited.append(__[1])
|
||||
ss =__[1]
|
||||
break
|
||||
|
||||
# check if all the children are visited
|
||||
if s == ss :
|
||||
stack.pop()
|
||||
on_the_way_back = True
|
||||
if len(stack) != 0:
|
||||
s = stack[len(stack) - 1]
|
||||
else:
|
||||
on_the_way_back = False
|
||||
indirect_parents.append(parent)
|
||||
parent = s
|
||||
s = ss
|
||||
|
||||
# check if se have reached the starting point
|
||||
if len(stack) == 0:
|
||||
return False
|
||||
|
||||
class Graph:
|
||||
def __init__(self):
|
||||
self.graph = {}
|
||||
|
||||
# adding vertices and edges
|
||||
# adding the weight is optional
|
||||
# handels repetition
|
||||
def add_pair(self, u, v, w = 1):
|
||||
# check if the u exists
|
||||
if self.graph.get(u):
|
||||
# if there already is a edge
|
||||
if self.graph[u].count([w,v]) == 0:
|
||||
self.graph[u].append([w, v])
|
||||
else:
|
||||
# if u does not exist
|
||||
self.graph[u] = [[w, v]]
|
||||
# add the other way
|
||||
if self.graph.get(v):
|
||||
# if there already is a edge
|
||||
if self.graph[v].count([w,u]) == 0:
|
||||
self.graph[v].append([w, u])
|
||||
else:
|
||||
# if u does not exist
|
||||
self.graph[v] = [[w, u]]
|
||||
|
||||
# handels if the input does not exist
|
||||
def remove_pair(self, u, v):
|
||||
if self.graph.get(u):
|
||||
for _ in self.graph[u]:
|
||||
if _[1] == v:
|
||||
self.graph[u].remove(_)
|
||||
# the other way round
|
||||
if self.graph.get(v):
|
||||
for _ in self.graph[v]:
|
||||
if _[1] == u:
|
||||
self.graph[v].remove(_)
|
||||
|
||||
# if no destination is meant the defaut value is -1
|
||||
def dfs(self, s = -2, d = -1):
|
||||
if s == d:
|
||||
return []
|
||||
stack = []
|
||||
visited = []
|
||||
if s == -2:
|
||||
s = list(self.graph.keys())[0]
|
||||
stack.append(s)
|
||||
visited.append(s)
|
||||
ss = s
|
||||
|
||||
while True:
|
||||
# check if there is any non isolated nodes
|
||||
if len(self.graph[s]) != 0:
|
||||
ss = s
|
||||
for __ in self.graph[s]:
|
||||
if visited.count(__[1]) < 1:
|
||||
if __[1] == d:
|
||||
visited.append(d)
|
||||
return visited
|
||||
else:
|
||||
stack.append(__[1])
|
||||
visited.append(__[1])
|
||||
ss =__[1]
|
||||
break
|
||||
|
||||
# check if all the children are visited
|
||||
if s == ss :
|
||||
stack.pop()
|
||||
if len(stack) != 0:
|
||||
s = stack[len(stack) - 1]
|
||||
else:
|
||||
s = ss
|
||||
|
||||
# check if se have reached the starting point
|
||||
if len(stack) == 0:
|
||||
return visited
|
||||
|
||||
# c is the count of nodes you want and if you leave it or pass -1 to the funtion the count
|
||||
# will be random from 10 to 10000
|
||||
def fill_graph_randomly(self, c = -1):
|
||||
if c == -1:
|
||||
c = (math.floor(rand.random() * 10000)) + 10
|
||||
for _ in range(c):
|
||||
# every vertex has max 100 edges
|
||||
e = math.floor(rand.random() * 102) + 1
|
||||
for __ in range(e):
|
||||
n = math.floor(rand.random() * (c)) + 1
|
||||
if n == _:
|
||||
continue
|
||||
self.add_pair(_, n, 1)
|
||||
|
||||
def bfs(self, s = -2):
|
||||
d = deque()
|
||||
visited = []
|
||||
if s == -2:
|
||||
s = list(self.graph.keys())[0]
|
||||
d.append(s)
|
||||
visited.append(s)
|
||||
while d:
|
||||
s = d.popleft()
|
||||
if len(self.graph[s]) != 0:
|
||||
for __ in self.graph[s]:
|
||||
if visited.count(__[1]) < 1:
|
||||
d.append(__[1])
|
||||
visited.append(__[1])
|
||||
return visited
|
||||
def degree(self, u):
|
||||
return len(self.graph[u])
|
||||
|
||||
def cycle_nodes(self):
|
||||
stack = []
|
||||
visited = []
|
||||
s = list(self.graph.keys())[0]
|
||||
stack.append(s)
|
||||
visited.append(s)
|
||||
parent = -2
|
||||
indirect_parents = []
|
||||
ss = s
|
||||
anticipating_nodes = set()
|
||||
|
||||
while True:
|
||||
# check if there is any non isolated nodes
|
||||
if len(self.graph[s]) != 0:
|
||||
ss = s
|
||||
for __ in self.graph[s]:
|
||||
if visited.count(__[1]) > 0 and __[1] != parent and indirect_parents.count(__[1]) > 0 and not on_the_way_back:
|
||||
l = len(stack) - 1
|
||||
while True and l >= 0:
|
||||
if stack[l] == __[1]:
|
||||
anticipating_nodes.add(__[1])
|
||||
break
|
||||
else:
|
||||
anticipating_nodes.add(stack[l])
|
||||
l -= 1
|
||||
if visited.count(__[1]) < 1:
|
||||
stack.append(__[1])
|
||||
visited.append(__[1])
|
||||
ss =__[1]
|
||||
break
|
||||
|
||||
# check if all the children are visited
|
||||
if s == ss :
|
||||
stack.pop()
|
||||
on_the_way_back = True
|
||||
if len(stack) != 0:
|
||||
s = stack[len(stack) - 1]
|
||||
else:
|
||||
on_the_way_back = False
|
||||
indirect_parents.append(parent)
|
||||
parent = s
|
||||
s = ss
|
||||
|
||||
# check if se have reached the starting point
|
||||
if len(stack) == 0:
|
||||
return list(anticipating_nodes)
|
||||
|
||||
def has_cycle(self):
|
||||
stack = []
|
||||
visited = []
|
||||
s = list(self.graph.keys())[0]
|
||||
stack.append(s)
|
||||
visited.append(s)
|
||||
parent = -2
|
||||
indirect_parents = []
|
||||
ss = s
|
||||
anticipating_nodes = set()
|
||||
|
||||
while True:
|
||||
# check if there is any non isolated nodes
|
||||
if len(self.graph[s]) != 0:
|
||||
ss = s
|
||||
for __ in self.graph[s]:
|
||||
if visited.count(__[1]) > 0 and __[1] != parent and indirect_parents.count(__[1]) > 0 and not on_the_way_back:
|
||||
l = len(stack) - 1
|
||||
while True and l >= 0:
|
||||
if stack[l] == __[1]:
|
||||
anticipating_nodes.add(__[1])
|
||||
break
|
||||
else:
|
||||
return True
|
||||
anticipating_nodes.add(stack[l])
|
||||
l -= 1
|
||||
if visited.count(__[1]) < 1:
|
||||
stack.append(__[1])
|
||||
visited.append(__[1])
|
||||
ss =__[1]
|
||||
break
|
||||
|
||||
# check if all the children are visited
|
||||
if s == ss :
|
||||
stack.pop()
|
||||
on_the_way_back = True
|
||||
if len(stack) != 0:
|
||||
s = stack[len(stack) - 1]
|
||||
else:
|
||||
on_the_way_back = False
|
||||
indirect_parents.append(parent)
|
||||
parent = s
|
||||
s = ss
|
||||
|
||||
# check if se have reached the starting point
|
||||
if len(stack) == 0:
|
||||
return False
|
Loading…
Reference in New Issue
Block a user