Reduce the complexity of other/scoring_algorithm.py (#8045)

* Increase the --max-complexity threshold in the file .flake8
This commit is contained in:
Maxim Smolskiy 2023-03-02 07:57:07 +03:00 committed by GitHub
parent 069a14b1c5
commit ee778128bd
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -23,29 +23,29 @@ Thus the weights for each column are as follows:
""" """
def procentual_proximity( def get_data(source_data: list[list[float]]) -> list[list[float]]:
source_data: list[list[float]], weights: list[int]
) -> list[list[float]]:
""" """
weights - int list >>> get_data([[20, 60, 2012],[23, 90, 2015],[22, 50, 2011]])
possible values - 0 / 1 [[20.0, 23.0, 22.0], [60.0, 90.0, 50.0], [2012.0, 2015.0, 2011.0]]
0 if lower values have higher weight in the data set
1 if higher values have higher weight in the data set
>>> procentual_proximity([[20, 60, 2012],[23, 90, 2015],[22, 50, 2011]], [0, 0, 1])
[[20, 60, 2012, 2.0], [23, 90, 2015, 1.0], [22, 50, 2011, 1.3333333333333335]]
""" """
# getting data
data_lists: list[list[float]] = [] data_lists: list[list[float]] = []
for data in source_data: for data in source_data:
for i, el in enumerate(data): for i, el in enumerate(data):
if len(data_lists) < i + 1: if len(data_lists) < i + 1:
data_lists.append([]) data_lists.append([])
data_lists[i].append(float(el)) data_lists[i].append(float(el))
return data_lists
def calculate_each_score(
data_lists: list[list[float]], weights: list[int]
) -> list[list[float]]:
"""
>>> calculate_each_score([[20, 23, 22], [60, 90, 50], [2012, 2015, 2011]],
... [0, 0, 1])
[[1.0, 0.0, 0.33333333333333337], [0.75, 0.0, 1.0], [0.25, 1.0, 0.0]]
"""
score_lists: list[list[float]] = [] score_lists: list[list[float]] = []
# calculating each score
for dlist, weight in zip(data_lists, weights): for dlist, weight in zip(data_lists, weights):
mind = min(dlist) mind = min(dlist)
maxd = max(dlist) maxd = max(dlist)
@ -72,14 +72,43 @@ def procentual_proximity(
score_lists.append(score) score_lists.append(score)
return score_lists
def generate_final_scores(score_lists: list[list[float]]) -> list[float]:
"""
>>> generate_final_scores([[1.0, 0.0, 0.33333333333333337],
... [0.75, 0.0, 1.0],
... [0.25, 1.0, 0.0]])
[2.0, 1.0, 1.3333333333333335]
"""
# initialize final scores # initialize final scores
final_scores: list[float] = [0 for i in range(len(score_lists[0]))] final_scores: list[float] = [0 for i in range(len(score_lists[0]))]
# generate final scores
for slist in score_lists: for slist in score_lists:
for j, ele in enumerate(slist): for j, ele in enumerate(slist):
final_scores[j] = final_scores[j] + ele final_scores[j] = final_scores[j] + ele
return final_scores
def procentual_proximity(
source_data: list[list[float]], weights: list[int]
) -> list[list[float]]:
"""
weights - int list
possible values - 0 / 1
0 if lower values have higher weight in the data set
1 if higher values have higher weight in the data set
>>> procentual_proximity([[20, 60, 2012],[23, 90, 2015],[22, 50, 2011]], [0, 0, 1])
[[20, 60, 2012, 2.0], [23, 90, 2015, 1.0], [22, 50, 2011, 1.3333333333333335]]
"""
data_lists = get_data(source_data)
score_lists = calculate_each_score(data_lists, weights)
final_scores = generate_final_scores(score_lists)
# append scores to source data # append scores to source data
for i, ele in enumerate(final_scores): for i, ele in enumerate(final_scores):
source_data[i].append(ele) source_data[i].append(ele)