Rewrite parts of Vector and Matrix (#5362)

* Rewrite parts of Vector and Matrix methods

* Refactor determinant method and add unit tests

Refactor determinant method to create separate minor and cofactor
methods.
Add respective unit tests for new methods.
Rename methods using snake case to follow Python naming conventions.

* Reorganize Vector and Matrix methods

* Update linear_algebra/README.md

Co-authored-by: John Law <johnlaw.po@gmail.com>

* Fix punctuation and wording

* Apply suggestions from code review

Co-authored-by: John Law <johnlaw.po@gmail.com>

Co-authored-by: John Law <johnlaw.po@gmail.com>
This commit is contained in:
Tianyi Zheng 2021-10-27 03:48:43 +00:00 committed by GitHub
parent 8285913e81
commit fe5c711ce6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 292 additions and 222 deletions

View File

@ -17,7 +17,7 @@ The knapsack problem has been studied for more than a century, with early works
## Documentation ## Documentation
This module uses docstrings to enable the use of Python's in-built `help(...)` function. This module uses docstrings to enable the use of Python's in-built `help(...)` function.
For instance, try `help(Vector)`, `help(unitBasisVector)`, and `help(CLASSNAME.METHODNAME)`. For instance, try `help(Vector)`, `help(unit_basis_vector)`, and `help(CLASSNAME.METHODNAME)`.
--- ---

View File

@ -10,56 +10,56 @@ This module contains classes and functions for doing linear algebra.
- -
- This class represents a vector of arbitrary size and related operations. - This class represents a vector of arbitrary size and related operations.
**Overview about the methods:** **Overview of the methods:**
- constructor(components : list) : init the vector - constructor(components) : init the vector
- set(components : list) : changes the vector components. - set(components) : changes the vector components.
- \_\_str\_\_() : toString method - \_\_str\_\_() : toString method
- component(i : int): gets the i-th component (start by 0) - component(i): gets the i-th component (0-indexed)
- \_\_len\_\_() : gets the size / length of the vector (number of components) - \_\_len\_\_() : gets the size / length of the vector (number of components)
- euclidLength() : returns the eulidean length of the vector. - euclidean_length() : returns the eulidean length of the vector
- operator + : vector addition - operator + : vector addition
- operator - : vector subtraction - operator - : vector subtraction
- operator * : scalar multiplication and dot product - operator * : scalar multiplication and dot product
- copy() : copies this vector and returns it. - copy() : copies this vector and returns it
- changeComponent(pos,value) : changes the specified component. - change_component(pos,value) : changes the specified component
- function zeroVector(dimension) - function zero_vector(dimension)
- returns a zero vector of 'dimension' - returns a zero vector of 'dimension'
- function unitBasisVector(dimension,pos) - function unit_basis_vector(dimension, pos)
- returns a unit basis vector with a One at index 'pos' (indexing at 0) - returns a unit basis vector with a one at index 'pos' (0-indexed)
- function axpy(scalar,vector1,vector2) - function axpy(scalar, vector1, vector2)
- computes the axpy operation - computes the axpy operation
- function randomVector(N,a,b) - function random_vector(N, a, b)
- returns a random vector of size N, with random integer components between 'a' and 'b'. - returns a random vector of size N, with random integer components between 'a' and 'b' inclusive
### class Matrix ### class Matrix
- -
- This class represents a matrix of arbitrary size and operations on it. - This class represents a matrix of arbitrary size and operations on it.
**Overview about the methods:** **Overview of the methods:**
- \_\_str\_\_() : returns a string representation - \_\_str\_\_() : returns a string representation
- operator * : implements the matrix vector multiplication - operator * : implements the matrix vector multiplication
implements the matrix-scalar multiplication. implements the matrix-scalar multiplication.
- changeComponent(x,y,value) : changes the specified component. - change_component(x, y, value) : changes the specified component.
- component(x,y) : returns the specified component. - component(x, y) : returns the specified component.
- width() : returns the width of the matrix - width() : returns the width of the matrix
- height() : returns the height of the matrix - height() : returns the height of the matrix
- determinate() : returns the determinate of the matrix if it is square - determinant() : returns the determinant of the matrix if it is square
- operator + : implements the matrix-addition. - operator + : implements the matrix-addition.
- operator - _ implements the matrix-subtraction - operator - : implements the matrix-subtraction
- function squareZeroMatrix(N) - function square_zero_matrix(N)
- returns a square zero-matrix of dimension NxN - returns a square zero-matrix of dimension NxN
- function randomMatrix(W,H,a,b) - function random_matrix(W, H, a, b)
- returns a random matrix WxH with integer components between 'a' and 'b' - returns a random matrix WxH with integer components between 'a' and 'b' inclusive
--- ---
## Documentation ## Documentation
This module uses docstrings to enable the use of Python's in-built `help(...)` function. This module uses docstrings to enable the use of Python's in-built `help(...)` function.
For instance, try `help(Vector)`, `help(unitBasisVector)`, and `help(CLASSNAME.METHODNAME)`. For instance, try `help(Vector)`, `help(unit_basis_vector)`, and `help(CLASSNAME.METHODNAME)`.
--- ---

View File

@ -10,13 +10,13 @@ with linear algebra in python.
Overview: Overview:
- class Vector - class Vector
- function zeroVector(dimension) - function zero_vector(dimension)
- function unitBasisVector(dimension,pos) - function unit_basis_vector(dimension, pos)
- function axpy(scalar,vector1,vector2) - function axpy(scalar, vector1, vector2)
- function randomVector(N,a,b) - function random_vector(N, a, b)
- class Matrix - class Matrix
- function squareZeroMatrix(N) - function square_zero_matrix(N)
- function randomMatrix(W,H,a,b) - function random_matrix(W, H, a, b)
""" """
from __future__ import annotations from __future__ import annotations
@ -30,20 +30,23 @@ class Vector:
This class represents a vector of arbitrary size. This class represents a vector of arbitrary size.
You need to give the vector components. You need to give the vector components.
Overview about the methods: Overview of the methods:
constructor(components : list) : init the vector __init__(components: Collection[float] | None): init the vector
set(components : list) : changes the vector components. __len__(): gets the size of the vector (number of components)
__str__() : toString method __str__(): returns a string representation
component(i : int): gets the i-th component (start by 0) __add__(other: Vector): vector addition
__len__() : gets the size of the vector (number of components) __sub__(other: Vector): vector subtraction
euclidLength() : returns the euclidean length of the vector. __mul__(other: float): scalar multiplication
operator + : vector addition __mul__(other: Vector): dot product
operator - : vector subtraction set(components: Collection[float]): changes the vector components
operator * : scalar multiplication and dot product copy(): copies this vector and returns it
copy() : copies this vector and returns it. component(i): gets the i-th component (0-indexed)
changeComponent(pos,value) : changes the specified component. change_component(pos: int, value: float): changes specified component
TODO: compare-operator euclidean_length(): returns the euclidean length of the vector
magnitude(): returns the magnitude of the vector
angle(other: Vector, deg: bool): returns the angle between two vectors
TODO: compare-operator
""" """
def __init__(self, components: Collection[float] | None = None) -> None: def __init__(self, components: Collection[float] | None = None) -> None:
@ -55,47 +58,17 @@ class Vector:
components = [] components = []
self.__components = list(components) self.__components = list(components)
def set(self, components: Collection[float]) -> None:
"""
input: new components
changes the components of the vector.
replace the components with newer one.
"""
if len(components) > 0:
self.__components = list(components)
else:
raise Exception("please give any vector")
def __str__(self) -> str:
"""
returns a string representation of the vector
"""
return "(" + ",".join(map(str, self.__components)) + ")"
def component(self, i: int) -> float:
"""
input: index (start at 0)
output: the i-th component of the vector.
"""
if type(i) is int and -len(self.__components) <= i < len(self.__components):
return self.__components[i]
else:
raise Exception("index out of range")
def __len__(self) -> int: def __len__(self) -> int:
""" """
returns the size of the vector returns the size of the vector
""" """
return len(self.__components) return len(self.__components)
def euclidLength(self) -> float: def __str__(self) -> str:
""" """
returns the euclidean length of the vector returns a string representation of the vector
""" """
summe: float = 0 return "(" + ",".join(map(str, self.__components)) + ")"
for c in self.__components:
summe += c ** 2
return math.sqrt(summe)
def __add__(self, other: Vector) -> Vector: def __add__(self, other: Vector) -> Vector:
""" """
@ -139,15 +112,57 @@ class Vector:
if isinstance(other, float) or isinstance(other, int): if isinstance(other, float) or isinstance(other, int):
ans = [c * other for c in self.__components] ans = [c * other for c in self.__components]
return Vector(ans) return Vector(ans)
elif isinstance(other, Vector) and (len(self) == len(other)): elif isinstance(other, Vector) and len(self) == len(other):
size = len(self) size = len(self)
summe: float = 0 prods = [self.__components[i] * other.component(i) for i in range(size)]
for i in range(size): return sum(prods)
summe += self.__components[i] * other.component(i)
return summe
else: # error case else: # error case
raise Exception("invalid operand!") raise Exception("invalid operand!")
def set(self, components: Collection[float]) -> None:
"""
input: new components
changes the components of the vector.
replaces the components with newer one.
"""
if len(components) > 0:
self.__components = list(components)
else:
raise Exception("please give any vector")
def copy(self) -> Vector:
"""
copies this vector and returns it.
"""
return Vector(self.__components)
def component(self, i: int) -> float:
"""
input: index (0-indexed)
output: the i-th component of the vector.
"""
if type(i) is int and -len(self.__components) <= i < len(self.__components):
return self.__components[i]
else:
raise Exception("index out of range")
def change_component(self, pos: int, value: float) -> None:
"""
input: an index (pos) and a value
changes the specified component (pos) with the
'value'
"""
# precondition
assert -len(self.__components) <= pos < len(self.__components)
self.__components[pos] = value
def euclidean_length(self) -> float:
"""
returns the euclidean length of the vector
"""
squares = [c ** 2 for c in self.__components]
return math.sqrt(sum(squares))
def magnitude(self) -> float: def magnitude(self) -> float:
""" """
Magnitude of a Vector Magnitude of a Vector
@ -156,7 +171,8 @@ class Vector:
5.385164807134504 5.385164807134504
""" """
return sum([i ** 2 for i in self.__components]) ** (1 / 2) squares = [c ** 2 for c in self.__components]
return math.sqrt(sum(squares))
def angle(self, other: Vector, deg: bool = False) -> float: def angle(self, other: Vector, deg: bool = False) -> float:
""" """
@ -178,24 +194,8 @@ class Vector:
else: else:
return math.acos(num / den) return math.acos(num / den)
def copy(self) -> Vector:
"""
copies this vector and returns it.
"""
return Vector(self.__components)
def changeComponent(self, pos: int, value: float) -> None: def zero_vector(dimension: int) -> Vector:
"""
input: an index (pos) and a value
changes the specified component (pos) with the
'value'
"""
# precondition
assert -len(self.__components) <= pos < len(self.__components)
self.__components[pos] = value
def zeroVector(dimension: int) -> Vector:
""" """
returns a zero-vector of size 'dimension' returns a zero-vector of size 'dimension'
""" """
@ -204,7 +204,7 @@ def zeroVector(dimension: int) -> Vector:
return Vector([0] * dimension) return Vector([0] * dimension)
def unitBasisVector(dimension: int, pos: int) -> Vector: def unit_basis_vector(dimension: int, pos: int) -> Vector:
""" """
returns a unit basis vector with a One returns a unit basis vector with a One
at index 'pos' (indexing at 0) at index 'pos' (indexing at 0)
@ -225,13 +225,13 @@ def axpy(scalar: float, x: Vector, y: Vector) -> Vector:
# precondition # precondition
assert ( assert (
isinstance(x, Vector) isinstance(x, Vector)
and (isinstance(y, Vector)) and isinstance(y, Vector)
and (isinstance(scalar, int) or isinstance(scalar, float)) and (isinstance(scalar, int) or isinstance(scalar, float))
) )
return x * scalar + y return x * scalar + y
def randomVector(N: int, a: int, b: int) -> Vector: def random_vector(n: int, a: int, b: int) -> Vector:
""" """
input: size (N) of the vector. input: size (N) of the vector.
random range (a,b) random range (a,b)
@ -239,26 +239,30 @@ def randomVector(N: int, a: int, b: int) -> Vector:
random integer components between 'a' and 'b'. random integer components between 'a' and 'b'.
""" """
random.seed(None) random.seed(None)
ans = [random.randint(a, b) for _ in range(N)] ans = [random.randint(a, b) for _ in range(n)]
return Vector(ans) return Vector(ans)
class Matrix: class Matrix:
""" """
class: Matrix class: Matrix
This class represents a arbitrary matrix. This class represents an arbitrary matrix.
Overview about the methods: Overview of the methods:
__str__() : returns a string representation __init__():
operator * : implements the matrix vector multiplication __str__(): returns a string representation
implements the matrix-scalar multiplication. __add__(other: Matrix): matrix addition
changeComponent(x,y,value) : changes the specified component. __sub__(other: Matrix): matrix subtraction
component(x,y) : returns the specified component. __mul__(other: float): scalar multiplication
width() : returns the width of the matrix __mul__(other: Vector): vector multiplication
height() : returns the height of the matrix height() : returns height
operator + : implements the matrix-addition. width() : returns width
operator - _ implements the matrix-subtraction component(x: int, y: int): returns specified component
change_component(x: int, y: int, value: float): changes specified component
minor(x: int, y: int): returns minor along (x, y)
cofactor(x: int, y: int): returns cofactor along (x, y)
determinant() : returns determinant
""" """
def __init__(self, matrix: list[list[float]], w: int, h: int) -> None: def __init__(self, matrix: list[list[float]], w: int, h: int) -> None:
@ -285,62 +289,37 @@ class Matrix:
ans += str(self.__matrix[i][j]) + "|\n" ans += str(self.__matrix[i][j]) + "|\n"
return ans return ans
def changeComponent(self, x: int, y: int, value: float) -> None: def __add__(self, other: Matrix) -> Matrix:
""" """
changes the x-y component of this matrix implements the matrix-addition.
""" """
if 0 <= x < self.__height and 0 <= y < self.__width: if self.__width == other.width() and self.__height == other.height():
self.__matrix[x][y] = value matrix = []
for i in range(self.__height):
row = [
self.__matrix[i][j] + other.component(i, j)
for j in range(self.__width)
]
matrix.append(row)
return Matrix(matrix, self.__width, self.__height)
else: else:
raise Exception("changeComponent: indices out of bounds") raise Exception("matrix must have the same dimension!")
def component(self, x: int, y: int) -> float: def __sub__(self, other: Matrix) -> Matrix:
""" """
returns the specified (x,y) component implements the matrix-subtraction.
""" """
if 0 <= x < self.__height and 0 <= y < self.__width: if self.__width == other.width() and self.__height == other.height():
return self.__matrix[x][y] matrix = []
for i in range(self.__height):
row = [
self.__matrix[i][j] - other.component(i, j)
for j in range(self.__width)
]
matrix.append(row)
return Matrix(matrix, self.__width, self.__height)
else: else:
raise Exception("changeComponent: indices out of bounds") raise Exception("matrices must have the same dimension!")
def width(self) -> int:
"""
getter for the width
"""
return self.__width
def height(self) -> int:
"""
getter for the height
"""
return self.__height
def determinate(self) -> float:
"""
returns the determinate of an nxn matrix using Laplace expansion
"""
if self.__height == self.__width and self.__width >= 2:
total = 0
if self.__width > 2:
for x in range(0, self.__width):
for y in range(0, self.__height):
total += (
self.__matrix[x][y]
* (-1) ** (x + y)
* Matrix(
self.__matrix[0:x] + self.__matrix[x + 1 :],
self.__width - 1,
self.__height - 1,
).determinate()
)
else:
return (
self.__matrix[0][0] * self.__matrix[1][1]
- self.__matrix[0][1] * self.__matrix[1][0]
)
return total
else:
raise Exception("matrix is not square")
@overload @overload
def __mul__(self, other: float) -> Matrix: def __mul__(self, other: float) -> Matrix:
@ -355,20 +334,20 @@ class Matrix:
implements the matrix-vector multiplication. implements the matrix-vector multiplication.
implements the matrix-scalar multiplication implements the matrix-scalar multiplication
""" """
if isinstance(other, Vector): # vector-matrix if isinstance(other, Vector): # matrix-vector
if len(other) == self.__width: if len(other) == self.__width:
ans = zeroVector(self.__height) ans = zero_vector(self.__height)
for i in range(self.__height): for i in range(self.__height):
summe: float = 0 prods = [
for j in range(self.__width): self.__matrix[i][j] * other.component(j)
summe += other.component(j) * self.__matrix[i][j] for j in range(self.__width)
ans.changeComponent(i, summe) ]
summe = 0 ans.change_component(i, sum(prods))
return ans return ans
else: else:
raise Exception( raise Exception(
"vector must have the same size as the " "vector must have the same size as the "
+ "number of columns of the matrix!" "number of columns of the matrix!"
) )
elif isinstance(other, int) or isinstance(other, float): # matrix-scalar elif isinstance(other, int) or isinstance(other, float): # matrix-scalar
matrix = [ matrix = [
@ -377,52 +356,95 @@ class Matrix:
] ]
return Matrix(matrix, self.__width, self.__height) return Matrix(matrix, self.__width, self.__height)
def __add__(self, other: Matrix) -> Matrix: def height(self) -> int:
""" """
implements the matrix-addition. getter for the height
""" """
if self.__width == other.width() and self.__height == other.height(): return self.__height
matrix = []
for i in range(self.__height): def width(self) -> int:
row = [] """
for j in range(self.__width): getter for the width
row.append(self.__matrix[i][j] + other.component(i, j)) """
matrix.append(row) return self.__width
return Matrix(matrix, self.__width, self.__height)
def component(self, x: int, y: int) -> float:
"""
returns the specified (x,y) component
"""
if 0 <= x < self.__height and 0 <= y < self.__width:
return self.__matrix[x][y]
else: else:
raise Exception("matrix must have the same dimension!") raise Exception("change_component: indices out of bounds")
def __sub__(self, other: Matrix) -> Matrix: def change_component(self, x: int, y: int, value: float) -> None:
""" """
implements the matrix-subtraction. changes the x-y component of this matrix
""" """
if self.__width == other.width() and self.__height == other.height(): if 0 <= x < self.__height and 0 <= y < self.__width:
matrix = [] self.__matrix[x][y] = value
for i in range(self.__height):
row = []
for j in range(self.__width):
row.append(self.__matrix[i][j] - other.component(i, j))
matrix.append(row)
return Matrix(matrix, self.__width, self.__height)
else: else:
raise Exception("matrix must have the same dimension!") raise Exception("change_component: indices out of bounds")
def minor(self, x: int, y: int) -> float:
"""
returns the minor along (x, y)
"""
if self.__height != self.__width:
raise Exception("Matrix is not square")
minor = self.__matrix[:x] + self.__matrix[x + 1 :]
for i in range(len(minor)):
minor[i] = minor[i][:y] + minor[i][y + 1 :]
return Matrix(minor, self.__width - 1, self.__height - 1).determinant()
def cofactor(self, x: int, y: int) -> float:
"""
returns the cofactor (signed minor) along (x, y)
"""
if self.__height != self.__width:
raise Exception("Matrix is not square")
if 0 <= x < self.__height and 0 <= y < self.__width:
return (-1) ** (x + y) * self.minor(x, y)
else:
raise Exception("Indices out of bounds")
def determinant(self) -> float:
"""
returns the determinant of an nxn matrix using Laplace expansion
"""
if self.__height != self.__width:
raise Exception("Matrix is not square")
if self.__height < 1:
raise Exception("Matrix has no element")
elif self.__height == 1:
return self.__matrix[0][0]
elif self.__height == 2:
return (
self.__matrix[0][0] * self.__matrix[1][1]
- self.__matrix[0][1] * self.__matrix[1][0]
)
else:
cofactor_prods = [
self.__matrix[0][y] * self.cofactor(0, y) for y in range(self.__width)
]
return sum(cofactor_prods)
def squareZeroMatrix(N: int) -> Matrix: def square_zero_matrix(n: int) -> Matrix:
""" """
returns a square zero-matrix of dimension NxN returns a square zero-matrix of dimension NxN
""" """
ans: list[list[float]] = [[0] * N for _ in range(N)] ans: list[list[float]] = [[0] * n for _ in range(n)]
return Matrix(ans, N, N) return Matrix(ans, n, n)
def randomMatrix(W: int, H: int, a: int, b: int) -> Matrix: def random_matrix(width: int, height: int, a: int, b: int) -> Matrix:
""" """
returns a random matrix WxH with integer components returns a random matrix WxH with integer components
between 'a' and 'b' between 'a' and 'b'
""" """
random.seed(None) random.seed(None)
matrix: list[list[float]] = [ matrix: list[list[float]] = [
[random.randint(a, b) for _ in range(W)] for _ in range(H) [random.randint(a, b) for _ in range(width)] for _ in range(height)
] ]
return Matrix(matrix, W, H) return Matrix(matrix, width, height)

View File

@ -8,13 +8,20 @@ This file contains the test-suite for the linear algebra library.
""" """
import unittest import unittest
from .lib import Matrix, Vector, axpy, squareZeroMatrix, unitBasisVector, zeroVector from .lib import (
Matrix,
Vector,
axpy,
square_zero_matrix,
unit_basis_vector,
zero_vector,
)
class Test(unittest.TestCase): class Test(unittest.TestCase):
def test_component(self) -> None: def test_component(self) -> None:
""" """
test for method component test for method component()
""" """
x = Vector([1, 2, 3]) x = Vector([1, 2, 3])
self.assertEqual(x.component(0), 1) self.assertEqual(x.component(0), 1)
@ -23,24 +30,24 @@ class Test(unittest.TestCase):
def test_str(self) -> None: def test_str(self) -> None:
""" """
test for toString() method test for method toString()
""" """
x = Vector([0, 0, 0, 0, 0, 1]) x = Vector([0, 0, 0, 0, 0, 1])
self.assertEqual(str(x), "(0,0,0,0,0,1)") self.assertEqual(str(x), "(0,0,0,0,0,1)")
def test_size(self) -> None: def test_size(self) -> None:
""" """
test for size()-method test for method size()
""" """
x = Vector([1, 2, 3, 4]) x = Vector([1, 2, 3, 4])
self.assertEqual(len(x), 4) self.assertEqual(len(x), 4)
def test_euclidLength(self) -> None: def test_euclidLength(self) -> None:
""" """
test for the eulidean length test for method euclidean_length()
""" """
x = Vector([1, 2]) x = Vector([1, 2])
self.assertAlmostEqual(x.euclidLength(), 2.236, 3) self.assertAlmostEqual(x.euclidean_length(), 2.236, 3)
def test_add(self) -> None: def test_add(self) -> None:
""" """
@ -67,26 +74,26 @@ class Test(unittest.TestCase):
test for * operator test for * operator
""" """
x = Vector([1, 2, 3]) x = Vector([1, 2, 3])
a = Vector([2, -1, 4]) # for test of dot-product a = Vector([2, -1, 4]) # for test of dot product
b = Vector([1, -2, -1]) b = Vector([1, -2, -1])
self.assertEqual(str(x * 3.0), "(3.0,6.0,9.0)") self.assertEqual(str(x * 3.0), "(3.0,6.0,9.0)")
self.assertEqual((a * b), 0) self.assertEqual((a * b), 0)
def test_zeroVector(self) -> None: def test_zeroVector(self) -> None:
""" """
test for the global function zeroVector(...) test for global function zero_vector()
""" """
self.assertTrue(str(zeroVector(10)).count("0") == 10) self.assertTrue(str(zero_vector(10)).count("0") == 10)
def test_unitBasisVector(self) -> None: def test_unitBasisVector(self) -> None:
""" """
test for the global function unitBasisVector(...) test for global function unit_basis_vector()
""" """
self.assertEqual(str(unitBasisVector(3, 1)), "(0,1,0)") self.assertEqual(str(unit_basis_vector(3, 1)), "(0,1,0)")
def test_axpy(self) -> None: def test_axpy(self) -> None:
""" """
test for the global function axpy(...) (operation) test for global function axpy() (operation)
""" """
x = Vector([1, 2, 3]) x = Vector([1, 2, 3])
y = Vector([1, 0, 1]) y = Vector([1, 0, 1])
@ -94,7 +101,7 @@ class Test(unittest.TestCase):
def test_copy(self) -> None: def test_copy(self) -> None:
""" """
test for the copy()-method test for method copy()
""" """
x = Vector([1, 0, 0, 0, 0, 0]) x = Vector([1, 0, 0, 0, 0, 0])
y = x.copy() y = x.copy()
@ -102,53 +109,94 @@ class Test(unittest.TestCase):
def test_changeComponent(self) -> None: def test_changeComponent(self) -> None:
""" """
test for the changeComponent(...)-method test for method change_component()
""" """
x = Vector([1, 0, 0]) x = Vector([1, 0, 0])
x.changeComponent(0, 0) x.change_component(0, 0)
x.changeComponent(1, 1) x.change_component(1, 1)
self.assertEqual(str(x), "(0,1,0)") self.assertEqual(str(x), "(0,1,0)")
def test_str_matrix(self) -> None: def test_str_matrix(self) -> None:
"""
test for Matrix method str()
"""
A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]], 3, 3) A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]], 3, 3)
self.assertEqual("|1,2,3|\n|2,4,5|\n|6,7,8|\n", str(A)) self.assertEqual("|1,2,3|\n|2,4,5|\n|6,7,8|\n", str(A))
def test_determinate(self) -> None: def test_minor(self) -> None:
""" """
test for determinate() test for Matrix method minor()
""" """
A = Matrix([[1, 1, 4, 5], [3, 3, 3, 2], [5, 1, 9, 0], [9, 7, 7, 9]], 4, 4) A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]], 3, 3)
self.assertEqual(-376, A.determinate()) minors = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]]
for x in range(A.height()):
for y in range(A.width()):
self.assertEqual(minors[x][y], A.minor(x, y))
def test_cofactor(self) -> None:
"""
test for Matrix method cofactor()
"""
A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]], 3, 3)
cofactors = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]]
for x in range(A.height()):
for y in range(A.width()):
self.assertEqual(cofactors[x][y], A.cofactor(x, y))
def test_determinant(self) -> None:
"""
test for Matrix method determinant()
"""
A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]], 3, 3)
self.assertEqual(-5, A.determinant())
def test__mul__matrix(self) -> None: def test__mul__matrix(self) -> None:
"""
test for Matrix * operator
"""
A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3, 3) A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3, 3)
x = Vector([1, 2, 3]) x = Vector([1, 2, 3])
self.assertEqual("(14,32,50)", str(A * x)) self.assertEqual("(14,32,50)", str(A * x))
self.assertEqual("|2,4,6|\n|8,10,12|\n|14,16,18|\n", str(A * 2)) self.assertEqual("|2,4,6|\n|8,10,12|\n|14,16,18|\n", str(A * 2))
def test_changeComponent_matrix(self) -> None: def test_change_component_matrix(self) -> None:
"""
test for Matrix method change_component()
"""
A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]], 3, 3) A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]], 3, 3)
A.changeComponent(0, 2, 5) A.change_component(0, 2, 5)
self.assertEqual("|1,2,5|\n|2,4,5|\n|6,7,8|\n", str(A)) self.assertEqual("|1,2,5|\n|2,4,5|\n|6,7,8|\n", str(A))
def test_component_matrix(self) -> None: def test_component_matrix(self) -> None:
"""
test for Matrix method component()
"""
A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]], 3, 3) A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]], 3, 3)
self.assertEqual(7, A.component(2, 1), 0.01) self.assertEqual(7, A.component(2, 1), 0.01)
def test__add__matrix(self) -> None: def test__add__matrix(self) -> None:
"""
test for Matrix + operator
"""
A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]], 3, 3) A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]], 3, 3)
B = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]], 3, 3) B = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]], 3, 3)
self.assertEqual("|2,4,10|\n|4,8,10|\n|12,14,18|\n", str(A + B)) self.assertEqual("|2,4,10|\n|4,8,10|\n|12,14,18|\n", str(A + B))
def test__sub__matrix(self) -> None: def test__sub__matrix(self) -> None:
"""
test for Matrix - operator
"""
A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]], 3, 3) A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]], 3, 3)
B = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]], 3, 3) B = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]], 3, 3)
self.assertEqual("|0,0,-4|\n|0,0,0|\n|0,0,-2|\n", str(A - B)) self.assertEqual("|0,0,-4|\n|0,0,0|\n|0,0,-2|\n", str(A - B))
def test_squareZeroMatrix(self) -> None: def test_squareZeroMatrix(self) -> None:
"""
test for global function square_zero_matrix()
"""
self.assertEqual( self.assertEqual(
"|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|" + "\n|0,0,0,0,0|\n", "|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n",
str(squareZeroMatrix(5)), str(square_zero_matrix(5)),
) )