mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-23 21:11:08 +00:00
Compare commits
10 Commits
191d8ac400
...
f9ba60700a
Author | SHA1 | Date | |
---|---|---|---|
|
f9ba60700a | ||
|
f3f32ae3ca | ||
|
d8c8acece9 | ||
|
242b208029 | ||
|
2409e252c8 | ||
|
9190304498 | ||
|
bda4d82da1 | ||
|
79ed4e77f9 | ||
|
aa5a8858ea | ||
|
2e67da3a7b |
|
@ -16,7 +16,7 @@ repos:
|
|||
- id: auto-walrus
|
||||
|
||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||
rev: v0.7.3
|
||||
rev: v0.7.4
|
||||
hooks:
|
||||
- id: ruff
|
||||
- id: ruff-format
|
||||
|
|
|
@ -1,17 +1,32 @@
|
|||
"""
|
||||
Numerical integration or quadrature for a smooth function f with known values at x_i
|
||||
|
||||
This method is the classical approach of suming 'Equally Spaced Abscissas'
|
||||
|
||||
method 1:
|
||||
"extended trapezoidal rule"
|
||||
The trapezoidal rule is the classical approach of summing 'Equally Spaced Abscissas'
|
||||
|
||||
"""
|
||||
|
||||
|
||||
def method_1(boundary, steps):
|
||||
# "extended trapezoidal rule"
|
||||
# int(f) = dx/2 * (f1 + 2f2 + ... + fn)
|
||||
def trapezoidal_rule(boundary, steps):
|
||||
"""
|
||||
This function implements the extended trapezoidal rule for numerical integration.
|
||||
The function f(x) is provided below.
|
||||
|
||||
:param boundary: List containing the lower and upper bounds of integration [a, b]
|
||||
:param steps: The number of steps (intervals) used in the approximation
|
||||
:return: The numerical approximation of the integral
|
||||
|
||||
>>> abs(trapezoidal_rule([0, 1], 10) - 0.33333) < 0.01
|
||||
True
|
||||
|
||||
>>> abs(trapezoidal_rule([0, 1], 100) - 0.33333) < 0.01
|
||||
True
|
||||
|
||||
>>> abs(trapezoidal_rule([0, 2], 1000) - 2.66667) < 0.01
|
||||
True
|
||||
|
||||
>>> abs(trapezoidal_rule([1, 2], 1000) - 2.33333) < 0.01
|
||||
True
|
||||
"""
|
||||
h = (boundary[1] - boundary[0]) / steps
|
||||
a = boundary[0]
|
||||
b = boundary[1]
|
||||
|
@ -19,30 +34,67 @@ def method_1(boundary, steps):
|
|||
y = 0.0
|
||||
y += (h / 2.0) * f(a)
|
||||
for i in x_i:
|
||||
# print(i)
|
||||
y += h * f(i)
|
||||
y += (h / 2.0) * f(b)
|
||||
return y
|
||||
|
||||
|
||||
def make_points(a, b, h):
|
||||
"""
|
||||
Generates the points between a and b with spacing h for trapezoidal integration.
|
||||
|
||||
:param a: The lower bound of integration
|
||||
:param b: The upper bound of integration
|
||||
:param h: The step size
|
||||
:yield: The next x-value in the range (a, b)
|
||||
|
||||
>>> list(make_points(0, 1, 0.1))
|
||||
[0.1, 0.2, 0.30000000000000004, \
|
||||
0.4, 0.5, 0.6, 0.7, \
|
||||
0.7999999999999999, \
|
||||
0.8999999999999999]
|
||||
"""
|
||||
x = a + h
|
||||
while x < (b - h):
|
||||
yield x
|
||||
x = x + h
|
||||
|
||||
|
||||
def f(x): # enter your function here
|
||||
y = (x - 0) * (x - 0)
|
||||
return y
|
||||
def f(x):
|
||||
"""
|
||||
This is the function to integrate, f(x) = (x - 0)^2 = x^2.
|
||||
|
||||
:param x: The input value
|
||||
:return: The value of f(x)
|
||||
|
||||
>>> f(0)
|
||||
0
|
||||
|
||||
>>> f(1)
|
||||
1
|
||||
|
||||
>>> f(0.5)
|
||||
0.25
|
||||
"""
|
||||
return x**2
|
||||
|
||||
|
||||
def main():
|
||||
a = 0.0 # Lower bound of integration
|
||||
b = 1.0 # Upper bound of integration
|
||||
steps = 10.0 # define number of steps or resolution
|
||||
boundary = [a, b] # define boundary of integration
|
||||
y = method_1(boundary, steps)
|
||||
"""
|
||||
Main function to test the trapezoidal rule.
|
||||
:a: Lower bound of integration
|
||||
:b: Upper bound of integration
|
||||
:steps: define number of steps or resolution
|
||||
:boundary: define boundary of integration
|
||||
|
||||
>>> main()
|
||||
y = 0.3349999999999999
|
||||
"""
|
||||
a = 0.0
|
||||
b = 1.0
|
||||
steps = 10.0
|
||||
boundary = [a, b]
|
||||
y = trapezoidal_rule(boundary, steps)
|
||||
print(f"y = {y}")
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user