Compare commits

...

9 Commits

Author SHA1 Message Date
Julien Richard
191d8ac400
Merge d8c8acece9 into e3bd7721c8 2024-11-15 15:19:14 +01:00
Julien RICHARD
d8c8acece9
modify tests, changes numbers to remove coma 2024-10-06 14:34:48 +02:00
Julien RICHARD
242b208029
fix: change function name in calls 2024-10-06 14:26:13 +02:00
Julien Richard
2409e252c8
Update maths/trapezoidal_rule.py
Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com>
2024-10-06 14:23:28 +02:00
Julien Richard
9190304498
Update maths/trapezoidal_rule.py
Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com>
2024-10-06 14:22:21 +02:00
Julien Richard
bda4d82da1
Update maths/trapezoidal_rule.py
Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com>
2024-10-06 14:21:58 +02:00
Julien Richard
79ed4e77f9
Update maths/trapezoidal_rule.py
Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com>
2024-10-06 14:21:42 +02:00
Julien RICHARD
aa5a8858ea
fix: too much characters in line 2024-10-01 19:36:58 +02:00
Julien RICHARD
2e67da3a7b
chore: improve comments and add tests to trapezoidal rule 2024-10-01 19:28:17 +02:00

View File

@ -1,17 +1,32 @@
"""
Numerical integration or quadrature for a smooth function f with known values at x_i
This method is the classical approach of suming 'Equally Spaced Abscissas'
method 1:
"extended trapezoidal rule"
The trapezoidal rule is the classical approach of summing 'Equally Spaced Abscissas'
"""
def method_1(boundary, steps):
# "extended trapezoidal rule"
# int(f) = dx/2 * (f1 + 2f2 + ... + fn)
def trapezoidal_rule(boundary, steps):
"""
This function implements the extended trapezoidal rule for numerical integration.
The function f(x) is provided below.
:param boundary: List containing the lower and upper bounds of integration [a, b]
:param steps: The number of steps (intervals) used in the approximation
:return: The numerical approximation of the integral
>>> abs(trapezoidal_rule([0, 1], 10) - 0.33333) < 0.01
True
>>> abs(trapezoidal_rule([0, 1], 100) - 0.33333) < 0.01
True
>>> abs(trapezoidal_rule([0, 2], 1000) - 2.66667) < 0.01
True
>>> abs(trapezoidal_rule([1, 2], 1000) - 2.33333) < 0.01
True
"""
h = (boundary[1] - boundary[0]) / steps
a = boundary[0]
b = boundary[1]
@ -19,30 +34,67 @@ def method_1(boundary, steps):
y = 0.0
y += (h / 2.0) * f(a)
for i in x_i:
# print(i)
y += h * f(i)
y += (h / 2.0) * f(b)
return y
def make_points(a, b, h):
"""
Generates the points between a and b with spacing h for trapezoidal integration.
:param a: The lower bound of integration
:param b: The upper bound of integration
:param h: The step size
:yield: The next x-value in the range (a, b)
>>> list(make_points(0, 1, 0.1))
[0.1, 0.2, 0.30000000000000004, \
0.4, 0.5, 0.6, 0.7, \
0.7999999999999999, \
0.8999999999999999]
"""
x = a + h
while x < (b - h):
yield x
x = x + h
def f(x): # enter your function here
y = (x - 0) * (x - 0)
return y
def f(x):
"""
This is the function to integrate, f(x) = (x - 0)^2 = x^2.
:param x: The input value
:return: The value of f(x)
>>> f(0)
0
>>> f(1)
1
>>> f(0.5)
0.25
"""
return x**2
def main():
a = 0.0 # Lower bound of integration
b = 1.0 # Upper bound of integration
steps = 10.0 # define number of steps or resolution
boundary = [a, b] # define boundary of integration
y = method_1(boundary, steps)
"""
Main function to test the trapezoidal rule.
:a: Lower bound of integration
:b: Upper bound of integration
:steps: define number of steps or resolution
:boundary: define boundary of integration
>>> main()
y = 0.3349999999999999
"""
a = 0.0
b = 1.0
steps = 10.0
boundary = [a, b]
y = trapezoidal_rule(boundary, steps)
print(f"y = {y}")