Compare commits

...

15 Commits

Author SHA1 Message Date
UTSAV SINGHAL
57c96baa93
Merge 064704be46 into 6c92c5a539 2025-01-28 16:16:39 +03:00
pre-commit-ci[bot]
6c92c5a539
[pre-commit.ci] pre-commit autoupdate (#12542)
* [pre-commit.ci] pre-commit autoupdate

updates:
- [github.com/astral-sh/ruff-pre-commit: v0.9.2 → v0.9.3](https://github.com/astral-sh/ruff-pre-commit/compare/v0.9.2...v0.9.3)
- [github.com/codespell-project/codespell: v2.3.0 → v2.4.0](https://github.com/codespell-project/codespell/compare/v2.3.0...v2.4.0)

* Update trifid_cipher.py

* Update pyproject.toml

* Update trifid_cipher.py

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Christian Clauss <cclauss@me.com>
2025-01-27 22:05:20 +01:00
Rachel Spears
13e4d3e76c
Fix error in avl_tree del_node function (#11510)
* fixed error in del_node function

* Update avl_tree.py

---------

Co-authored-by: Maxim Smolskiy <mithridatus@mail.ru>
2025-01-24 08:59:36 +03:00
Vijayalaxmi Wakode
c666db3729
Add Doc test bubble sort (#12070)
* The string manipulation - replace()

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update replace.py

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* updating DIRECTORY.md

* Add doc test to bubble_sort

* Update DIRECTORY.md

* Delete strings/replace.py

* Update bubble_sort.py

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: vijayalaxmi777 <vijayalaxmi777@users.noreply.github.com>
Co-authored-by: Maxim Smolskiy <mithridatus@mail.ru>
2025-01-24 01:01:47 +03:00
Ronald Ngounou
9fb51b4169
Update docstrings in the functions definitions. (#11797) 2025-01-23 11:02:46 +03:00
pre-commit-ci[bot]
1f74db0c06
[pre-commit.ci] pre-commit autoupdate (#12536)
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.9.1 → v0.9.2](https://github.com/astral-sh/ruff-pre-commit/compare/v0.9.1...v0.9.2)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-01-20 21:22:02 +01:00
pre-commit-ci[bot]
064704be46 [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
2024-12-02 08:53:15 +00:00
UTSAV SINGHAL
20184aa433
Update genetic_algorithm_optimization.py
doctest for the function select_parents
2024-12-02 14:22:39 +05:30
UTSAV SINGHAL
cdb28e53e5
Merge branch 'TheAlgorithms:master' into ga_optimization 2024-12-02 14:20:27 +05:30
pre-commit-ci[bot]
9049228ff8 [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
2024-11-15 09:26:57 +00:00
UTSAV SINGHAL
84b29c0eed
Update genetic_algorithm_optimization.py 2024-11-15 14:56:23 +05:30
UTSAV SINGHAL
dbd29aed76
Update genetic_algorithm_optimization.py 2024-11-15 14:50:15 +05:30
pre-commit-ci[bot]
d62f39f647 [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
2024-11-15 09:01:02 +00:00
UTSAV SINGHAL
c9c9639803
Update genetic_algorithm_optimization.py 2024-11-15 14:29:51 +05:30
UTSAV SINGHAL
39be73f0b5
Create genetic_algorithm_optimization.py 2024-11-15 14:23:56 +05:30
7 changed files with 382 additions and 23 deletions

View File

@ -16,13 +16,13 @@ repos:
- id: auto-walrus
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.9.1
rev: v0.9.3
hooks:
- id: ruff
- id: ruff-format
- repo: https://github.com/codespell-project/codespell
rev: v2.3.0
rev: v2.4.0
hooks:
- id: codespell
additional_dependencies:

View File

@ -88,7 +88,7 @@ def __prepare(
...
KeyError: 'Length of alphabet has to be 27.'
Testing with punctuations that are not in the given alphabet
Testing with punctuation not in the given alphabet
>>> __prepare('am i a boy?','abCdeFghijkLmnopqrStuVwxYZ+')
Traceback (most recent call last):
@ -128,7 +128,7 @@ def encrypt_message(
encrypt_message
===============
Encrypts a message using the trifid_cipher. Any punctuatuions that
Encrypts a message using the trifid_cipher. Any punctuatuion chars that
would be used should be added to the alphabet.
PARAMETERS

View File

@ -9,7 +9,9 @@ import time
def cross(items_a, items_b):
"Cross product of elements in A and elements in B."
"""
Cross product of elements in A and elements in B.
"""
return [a + b for a in items_a for b in items_b]
@ -27,7 +29,7 @@ peers = {s: {x for u in units[s] for x in u} - {s} for s in squares}
def test():
"A set of unit tests."
"""A set of unit tests."""
assert len(squares) == 81
assert len(unitlist) == 27
assert all(len(units[s]) == 3 for s in squares)
@ -47,8 +49,10 @@ def test():
def parse_grid(grid):
"""Convert grid to a dict of possible values, {square: digits}, or
return False if a contradiction is detected."""
"""
Convert grid to a dict of possible values, {square: digits}, or
return False if a contradiction is detected.
"""
## To start, every square can be any digit; then assign values from the grid.
values = {s: digits for s in squares}
for s, d in grid_values(grid).items():
@ -58,15 +62,19 @@ def parse_grid(grid):
def grid_values(grid):
"Convert grid into a dict of {square: char} with '0' or '.' for empties."
"""
Convert grid into a dict of {square: char} with '0' or '.' for empties.
"""
chars = [c for c in grid if c in digits or c in "0."]
assert len(chars) == 81
return dict(zip(squares, chars))
def assign(values, s, d):
"""Eliminate all the other values (except d) from values[s] and propagate.
Return values, except return False if a contradiction is detected."""
"""
Eliminate all the other values (except d) from values[s] and propagate.
Return values, except return False if a contradiction is detected.
"""
other_values = values[s].replace(d, "")
if all(eliminate(values, s, d2) for d2 in other_values):
return values
@ -75,8 +83,10 @@ def assign(values, s, d):
def eliminate(values, s, d):
"""Eliminate d from values[s]; propagate when values or places <= 2.
Return values, except return False if a contradiction is detected."""
"""
Eliminate d from values[s]; propagate when values or places <= 2.
Return values, except return False if a contradiction is detected.
"""
if d not in values[s]:
return values ## Already eliminated
values[s] = values[s].replace(d, "")
@ -99,7 +109,9 @@ def eliminate(values, s, d):
def display(values):
"Display these values as a 2-D grid."
"""
Display these values as a 2-D grid.
"""
width = 1 + max(len(values[s]) for s in squares)
line = "+".join(["-" * (width * 3)] * 3)
for r in rows:
@ -114,11 +126,14 @@ def display(values):
def solve(grid):
"""
Solve the grid.
"""
return search(parse_grid(grid))
def some(seq):
"Return some element of seq that is true."
"""Return some element of seq that is true."""
for e in seq:
if e:
return e
@ -126,7 +141,9 @@ def some(seq):
def search(values):
"Using depth-first search and propagation, try all possible values."
"""
Using depth-first search and propagation, try all possible values.
"""
if values is False:
return False ## Failed earlier
if all(len(values[s]) == 1 for s in squares):
@ -137,9 +154,11 @@ def search(values):
def solve_all(grids, name="", showif=0.0):
"""Attempt to solve a sequence of grids. Report results.
"""
Attempt to solve a sequence of grids. Report results.
When showif is a number of seconds, display puzzles that take longer.
When showif is None, don't display any puzzles."""
When showif is None, don't display any puzzles.
"""
def time_solve(grid):
start = time.monotonic()
@ -162,7 +181,9 @@ def solve_all(grids, name="", showif=0.0):
def solved(values):
"A puzzle is solved if each unit is a permutation of the digits 1 to 9."
"""
A puzzle is solved if each unit is a permutation of the digits 1 to 9.
"""
def unitsolved(unit):
return {values[s] for s in unit} == set(digits)
@ -177,9 +198,11 @@ def from_file(filename, sep="\n"):
def random_puzzle(assignments=17):
"""Make a random puzzle with N or more assignments. Restart on contradictions.
"""
Make a random puzzle with N or more assignments. Restart on contradictions.
Note the resulting puzzle is not guaranteed to be solvable, but empirically
about 99.8% of them are solvable. Some have multiple solutions."""
about 99.8% of them are solvable. Some have multiple solutions.
"""
values = {s: digits for s in squares}
for s in shuffled(squares):
if not assign(values, s, random.choice(values[s])):
@ -191,7 +214,9 @@ def random_puzzle(assignments=17):
def shuffled(seq):
"Return a randomly shuffled copy of the input sequence."
"""
Return a randomly shuffled copy of the input sequence.
"""
seq = list(seq)
random.shuffle(seq)
return seq

View File

@ -221,6 +221,10 @@ def del_node(root: MyNode, data: Any) -> MyNode | None:
else:
root.set_right(del_node(right_child, data))
# Re-fetch left_child and right_child references
left_child = root.get_left()
right_child = root.get_right()
if get_height(right_child) - get_height(left_child) == 2:
assert right_child is not None
if get_height(right_child.get_right()) > get_height(right_child.get_left()):

View File

@ -0,0 +1,328 @@
import random
from collections.abc import Callable, Sequence
from concurrent.futures import ThreadPoolExecutor
import numpy as np
# Parameters
N_POPULATION = 100 # Population size
N_GENERATIONS = 500 # Maximum number of generations
N_SELECTED = 50 # Number of parents selected for the next generation
MUTATION_PROBABILITY = 0.1 # Mutation probability
CROSSOVER_RATE = 0.8 # Probability of crossover
SEARCH_SPACE = (-10, 10) # Search space for the variables
# Random number generator
rng = np.random.default_rng()
class GeneticAlgorithm:
def __init__(
self,
function: Callable[[float, float], float],
bounds: Sequence[tuple[int | float, int | float]],
population_size: int,
generations: int,
mutation_prob: float,
crossover_rate: float,
maximize: bool = True,
) -> None:
self.function = function # Target function to optimize
self.bounds = bounds # Search space bounds (for each variable)
self.population_size = population_size
self.generations = generations
self.mutation_prob = mutation_prob
self.crossover_rate = crossover_rate
self.maximize = maximize
self.dim = len(bounds) # Dimensionality of the function (number of variables)
# Initialize population
self.population = self.initialize_population()
def initialize_population(self) -> list[np.ndarray]:
"""
Initialize the population with random individuals within the search space.
Example:
>>> ga = GeneticAlgorithm(
... function=lambda x, y: x**2 + y**2,
... bounds=[(-10, 10), (-10, 10)],
... population_size=5,
... generations=10,
... mutation_prob=0.1,
... crossover_rate=0.8,
... maximize=False
... )
>>> len(ga.initialize_population())
5 # The population size should be equal to 5.
>>> all(len(ind) == 2 for ind in ga.initialize_population())
# Each individual should have 2 variables
True
"""
return [
np.array([rng.uniform(b[0], b[1]) for b in self.bounds])
for _ in range(self.population_size)
]
def fitness(self, individual: np.ndarray) -> float:
"""
Calculate the fitness value (function value) for an individual.
Example:
>>> ga = GeneticAlgorithm(
... function=lambda x, y: x**2 + y**2,
... bounds=[(-10, 10), (-10, 10)],
... population_size=10,
... generations=10,
... mutation_prob=0.1,
... crossover_rate=0.8,
... maximize=False
... )
>>> individual = np.array([1.0, 2.0])
>>> ga.fitness(individual)
-5.0 # The fitness should be -1^2 + 2^2 = 5 for minimizing
>>> ga.maximize = True
>>> ga.fitness(individual)
5.0 # The fitness should be 1^2 + 2^2 = 5 when maximizing
"""
value = float(self.function(*individual)) # Ensure fitness is a float
return value if self.maximize else -value # If minimizing, invert the fitness
def select_parents(
self, population_score: list[tuple[np.ndarray, float]]
) -> list[np.ndarray]:
"""
Select top N_SELECTED parents based on fitness.
Example:
>>> ga = GeneticAlgorithm(
... function=lambda x, y: x**2 + y**2,
... bounds=[(-10, 10), (-10, 10)],
... population_size=10,
... generations=10,
... mutation_prob=0.1,
... crossover_rate=0.8,
... maximize=False
... )
>>> population_score = [
... (np.array([1.0, 2.0]), 5.0),
... (np.array([-1.0, -2.0]), 5.0),
... (np.array([0.0, 0.0]), 0.0),
... ]
>>> selected_parents = ga.select_parents(population_score)
>>> len(selected_parents)
2 # Should select the two parents with the best fitness scores.
>>> np.array_equal(selected_parents[0], np.array([1.0, 2.0]))
True # Parent 1 should be [1.0, 2.0]
>>> np.array_equal(selected_parents[1], np.array([-1.0, -2.0]))
True # Parent 2 should be [-1.0, -2.0]
>>> population_score = [
... (np.array([1.0, 2.0]), 5.0),
... (np.array([1.0, -2.0]), 5.0),
... (np.array([0.0, 0.0]), 0.0),
... (np.array([-1.0, 2.0]), 5.0),
... (np.array([-1.0, -2.0]), 5.0)
... ]
>>> selected_parents = ga.select_parents(population_score)
>>> len(selected_parents)
5 # Should select the top 5 parents with the best fitness scores.
>>> np.array_equal(selected_parents[0], np.array([1.0, 2.0]))
True # Parent 1 should be [1.0, 2.0]
"""
if not population_score:
raise ValueError("Population score is empty, cannot select parents.")
population_score.sort(key=lambda score_tuple: score_tuple[1], reverse=True)
selected_count = min(N_SELECTED, len(population_score))
return [ind for ind, _ in population_score[:selected_count]]
def crossover(
self, parent1: np.ndarray, parent2: np.ndarray
) -> tuple[np.ndarray, np.ndarray]:
"""
Perform uniform crossover between two parents to generate offspring.
Args:
parent1 (np.ndarray): The first parent.
parent2 (np.ndarray): The second parent.
Returns:
tuple[np.ndarray, np.ndarray]: The two offspring generated by crossover.
Example:
>>> ga = GeneticAlgorithm(
... lambda x, y: -(x**2 + y**2),
... [(-10, 10), (-10, 10)],
... 10, 100, 0.1, 0.8, True
... )
>>> parent1, parent2 = np.array([1, 2]), np.array([3, 4])
>>> len(ga.crossover(parent1, parent2)) == 2
True
"""
if random.random() < self.crossover_rate:
cross_point = random.randint(1, self.dim - 1)
child1 = np.concatenate((parent1[:cross_point], parent2[cross_point:]))
child2 = np.concatenate((parent2[:cross_point], parent1[cross_point:]))
return child1, child2
return parent1, parent2
def mutate(self, individual: np.ndarray) -> np.ndarray:
"""
Apply mutation to an individual.
Args:
individual (np.ndarray): The individual to mutate.
Returns:
np.ndarray: The mutated individual.
Example:
>>> ga = GeneticAlgorithm(
... lambda x, y: -(x**2 + y**2),
... [(-10, 10), (-10, 10)],
... 10, 100, 0.1, 0.8, True
... )
>>> ind = np.array([1.0, 2.0])
>>> mutated = ga.mutate(ind)
>>> len(mutated) == 2 # Ensure it still has the correct number of dimensions
True
"""
for i in range(self.dim):
if random.random() < self.mutation_prob:
individual[i] = rng.uniform(self.bounds[i][0], self.bounds[i][1])
return individual
def evaluate_population(self) -> list[tuple[np.ndarray, float]]:
"""
Evaluate the fitness of the entire population in parallel.
Returns:
list[tuple[np.ndarray, float]]:
The population with their respective fitness values.
Example:
>>> ga = GeneticAlgorithm(
... lambda x, y: -(x**2 + y**2),
... [(-10, 10), (-10, 10)],
... 10, 100, 0.1, 0.8, True
... )
>>> eval_population = ga.evaluate_population()
>>> len(eval_population) == ga.population_size # Ensure population size
True
>>> all(
... isinstance(ind, tuple) and isinstance(ind[1], float)
... for ind in eval_population
... )
True
"""
with ThreadPoolExecutor() as executor:
return list(
executor.map(
lambda individual: (individual, self.fitness(individual)),
self.population,
)
)
def evolve(self, verbose: bool = True) -> np.ndarray:
"""
Evolve the population over the generations to find the best solution.
Args:
verbose (bool): If True, prints the progress of the generations.
Returns:
np.ndarray: The best individual found during the evolution process.
Example:
>>> ga = GeneticAlgorithm(
... function=lambda x, y: x**2 + y**2,
... bounds=[(-10, 10), (-10, 10)],
... population_size=10,
... generations=10,
... mutation_prob=0.1,
... crossover_rate=0.8,
... maximize=False
... )
>>> best_solution = ga.evolve(verbose=False)
>>> len(best_solution)
2 # The best solution should be a 2-element array (var_x, var_y)
>>> isinstance(best_solution[0], float) # First element should be a float
True
>>> isinstance(best_solution[1], float) # Second element should be a float
True
"""
best_individual = None
for generation in range(self.generations):
# Evaluate population fitness (multithreaded)
population_score = self.evaluate_population()
# Ensure population_score isn't empty
if not population_score:
raise ValueError("Population score is empty. No individuals evaluated.")
# Check the best individual
best_individual = max(
population_score, key=lambda score_tuple: score_tuple[1]
)[0]
best_fitness = self.fitness(best_individual)
# Select parents for next generation
parents = self.select_parents(population_score)
next_generation = []
# Generate offspring using crossover and mutation
for i in range(0, len(parents), 2):
parent1, parent2 = (
parents[i],
parents[(i + 1) % len(parents)],
) # Wrap around for odd cases
child1, child2 = self.crossover(parent1, parent2)
next_generation.append(self.mutate(child1))
next_generation.append(self.mutate(child2))
# Ensure population size remains the same
self.population = next_generation[: self.population_size]
if verbose and generation % 10 == 0:
print(f"Generation {generation}: Best Fitness = {best_fitness}")
return best_individual
# Example target function for optimization
def target_function(var_x: float, var_y: float) -> float:
"""
Example target function (parabola) for optimization.
Args:
var_x (float): The x-coordinate.
var_y (float): The y-coordinate.
Returns:
float: The value of the function at (var_x, var_y).
Example:
>>> target_function(0, 0)
0
>>> target_function(1, 1)
2
"""
return var_x**2 + var_y**2 # Simple parabolic surface (minimization)
# Set bounds for the variables (var_x, var_y)
bounds = [(-10, 10), (-10, 10)] # Both var_x and var_y range from -10 to 10
# Instantiate and run the genetic algorithm
ga = GeneticAlgorithm(
function=target_function,
bounds=bounds,
population_size=N_POPULATION,
generations=N_GENERATIONS,
mutation_prob=MUTATION_PROBABILITY,
crossover_rate=CROSSOVER_RATE,
maximize=False, # Minimize the function
)
best_solution = ga.evolve()
print(f"Best solution found: {best_solution}")
print(f"Best fitness (minimum value of function): {target_function(*best_solution)}")

View File

@ -159,7 +159,7 @@ lint.pylint.max-returns = 8 # default: 6
lint.pylint.max-statements = 88 # default: 50
[tool.codespell]
ignore-words-list = "3rt,ans,bitap,crate,damon,fo,followings,hist,iff,kwanza,manuel,mater,secant,som,sur,tim,toi,zar"
ignore-words-list = "3rt,abd,aer,ans,bitap,crate,damon,fo,followings,hist,iff,kwanza,manuel,mater,secant,som,sur,tim,toi,zar"
skip = "./.*,*.json,*.lock,ciphers/prehistoric_men.txt,project_euler/problem_022/p022_names.txt,pyproject.toml,strings/dictionary.txt,strings/words.txt"
[tool.pytest.ini_options]

View File

@ -85,6 +85,8 @@ def bubble_sort_recursive(collection: list[Any]) -> list[Any]:
[1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7]
>>> bubble_sort_recursive([1, 3.3, 5, 7.7, 2, 4.4, 6])
[1, 2, 3.3, 4.4, 5, 6, 7.7]
>>> bubble_sort_recursive(['a', 'Z', 'B', 'C', 'A', 'c'])
['A', 'B', 'C', 'Z', 'a', 'c']
>>> import random
>>> collection_arg = random.sample(range(-50, 50), 100)
>>> bubble_sort_recursive(collection_arg) == sorted(collection_arg)