Compare commits

...

15 Commits

Author SHA1 Message Date
UTSAV SINGHAL
57c96baa93
Merge 064704be46 into 6c92c5a539 2025-01-28 16:16:39 +03:00
pre-commit-ci[bot]
6c92c5a539
[pre-commit.ci] pre-commit autoupdate (#12542)
* [pre-commit.ci] pre-commit autoupdate

updates:
- [github.com/astral-sh/ruff-pre-commit: v0.9.2 → v0.9.3](https://github.com/astral-sh/ruff-pre-commit/compare/v0.9.2...v0.9.3)
- [github.com/codespell-project/codespell: v2.3.0 → v2.4.0](https://github.com/codespell-project/codespell/compare/v2.3.0...v2.4.0)

* Update trifid_cipher.py

* Update pyproject.toml

* Update trifid_cipher.py

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Christian Clauss <cclauss@me.com>
2025-01-27 22:05:20 +01:00
Rachel Spears
13e4d3e76c
Fix error in avl_tree del_node function (#11510)
* fixed error in del_node function

* Update avl_tree.py

---------

Co-authored-by: Maxim Smolskiy <mithridatus@mail.ru>
2025-01-24 08:59:36 +03:00
Vijayalaxmi Wakode
c666db3729
Add Doc test bubble sort (#12070)
* The string manipulation - replace()

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update replace.py

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* updating DIRECTORY.md

* Add doc test to bubble_sort

* Update DIRECTORY.md

* Delete strings/replace.py

* Update bubble_sort.py

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: vijayalaxmi777 <vijayalaxmi777@users.noreply.github.com>
Co-authored-by: Maxim Smolskiy <mithridatus@mail.ru>
2025-01-24 01:01:47 +03:00
Ronald Ngounou
9fb51b4169
Update docstrings in the functions definitions. (#11797) 2025-01-23 11:02:46 +03:00
pre-commit-ci[bot]
1f74db0c06
[pre-commit.ci] pre-commit autoupdate (#12536)
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.9.1 → v0.9.2](https://github.com/astral-sh/ruff-pre-commit/compare/v0.9.1...v0.9.2)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-01-20 21:22:02 +01:00
pre-commit-ci[bot]
064704be46 [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
2024-12-02 08:53:15 +00:00
UTSAV SINGHAL
20184aa433
Update genetic_algorithm_optimization.py
doctest for the function select_parents
2024-12-02 14:22:39 +05:30
UTSAV SINGHAL
cdb28e53e5
Merge branch 'TheAlgorithms:master' into ga_optimization 2024-12-02 14:20:27 +05:30
pre-commit-ci[bot]
9049228ff8 [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
2024-11-15 09:26:57 +00:00
UTSAV SINGHAL
84b29c0eed
Update genetic_algorithm_optimization.py 2024-11-15 14:56:23 +05:30
UTSAV SINGHAL
dbd29aed76
Update genetic_algorithm_optimization.py 2024-11-15 14:50:15 +05:30
pre-commit-ci[bot]
d62f39f647 [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
2024-11-15 09:01:02 +00:00
UTSAV SINGHAL
c9c9639803
Update genetic_algorithm_optimization.py 2024-11-15 14:29:51 +05:30
UTSAV SINGHAL
39be73f0b5
Create genetic_algorithm_optimization.py 2024-11-15 14:23:56 +05:30
7 changed files with 382 additions and 23 deletions

View File

@ -16,13 +16,13 @@ repos:
- id: auto-walrus - id: auto-walrus
- repo: https://github.com/astral-sh/ruff-pre-commit - repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.9.1 rev: v0.9.3
hooks: hooks:
- id: ruff - id: ruff
- id: ruff-format - id: ruff-format
- repo: https://github.com/codespell-project/codespell - repo: https://github.com/codespell-project/codespell
rev: v2.3.0 rev: v2.4.0
hooks: hooks:
- id: codespell - id: codespell
additional_dependencies: additional_dependencies:

View File

@ -88,7 +88,7 @@ def __prepare(
... ...
KeyError: 'Length of alphabet has to be 27.' KeyError: 'Length of alphabet has to be 27.'
Testing with punctuations that are not in the given alphabet Testing with punctuation not in the given alphabet
>>> __prepare('am i a boy?','abCdeFghijkLmnopqrStuVwxYZ+') >>> __prepare('am i a boy?','abCdeFghijkLmnopqrStuVwxYZ+')
Traceback (most recent call last): Traceback (most recent call last):
@ -128,7 +128,7 @@ def encrypt_message(
encrypt_message encrypt_message
=============== ===============
Encrypts a message using the trifid_cipher. Any punctuatuions that Encrypts a message using the trifid_cipher. Any punctuatuion chars that
would be used should be added to the alphabet. would be used should be added to the alphabet.
PARAMETERS PARAMETERS

View File

@ -9,7 +9,9 @@ import time
def cross(items_a, items_b): def cross(items_a, items_b):
"Cross product of elements in A and elements in B." """
Cross product of elements in A and elements in B.
"""
return [a + b for a in items_a for b in items_b] return [a + b for a in items_a for b in items_b]
@ -27,7 +29,7 @@ peers = {s: {x for u in units[s] for x in u} - {s} for s in squares}
def test(): def test():
"A set of unit tests." """A set of unit tests."""
assert len(squares) == 81 assert len(squares) == 81
assert len(unitlist) == 27 assert len(unitlist) == 27
assert all(len(units[s]) == 3 for s in squares) assert all(len(units[s]) == 3 for s in squares)
@ -47,8 +49,10 @@ def test():
def parse_grid(grid): def parse_grid(grid):
"""Convert grid to a dict of possible values, {square: digits}, or """
return False if a contradiction is detected.""" Convert grid to a dict of possible values, {square: digits}, or
return False if a contradiction is detected.
"""
## To start, every square can be any digit; then assign values from the grid. ## To start, every square can be any digit; then assign values from the grid.
values = {s: digits for s in squares} values = {s: digits for s in squares}
for s, d in grid_values(grid).items(): for s, d in grid_values(grid).items():
@ -58,15 +62,19 @@ def parse_grid(grid):
def grid_values(grid): def grid_values(grid):
"Convert grid into a dict of {square: char} with '0' or '.' for empties." """
Convert grid into a dict of {square: char} with '0' or '.' for empties.
"""
chars = [c for c in grid if c in digits or c in "0."] chars = [c for c in grid if c in digits or c in "0."]
assert len(chars) == 81 assert len(chars) == 81
return dict(zip(squares, chars)) return dict(zip(squares, chars))
def assign(values, s, d): def assign(values, s, d):
"""Eliminate all the other values (except d) from values[s] and propagate. """
Return values, except return False if a contradiction is detected.""" Eliminate all the other values (except d) from values[s] and propagate.
Return values, except return False if a contradiction is detected.
"""
other_values = values[s].replace(d, "") other_values = values[s].replace(d, "")
if all(eliminate(values, s, d2) for d2 in other_values): if all(eliminate(values, s, d2) for d2 in other_values):
return values return values
@ -75,8 +83,10 @@ def assign(values, s, d):
def eliminate(values, s, d): def eliminate(values, s, d):
"""Eliminate d from values[s]; propagate when values or places <= 2. """
Return values, except return False if a contradiction is detected.""" Eliminate d from values[s]; propagate when values or places <= 2.
Return values, except return False if a contradiction is detected.
"""
if d not in values[s]: if d not in values[s]:
return values ## Already eliminated return values ## Already eliminated
values[s] = values[s].replace(d, "") values[s] = values[s].replace(d, "")
@ -99,7 +109,9 @@ def eliminate(values, s, d):
def display(values): def display(values):
"Display these values as a 2-D grid." """
Display these values as a 2-D grid.
"""
width = 1 + max(len(values[s]) for s in squares) width = 1 + max(len(values[s]) for s in squares)
line = "+".join(["-" * (width * 3)] * 3) line = "+".join(["-" * (width * 3)] * 3)
for r in rows: for r in rows:
@ -114,11 +126,14 @@ def display(values):
def solve(grid): def solve(grid):
"""
Solve the grid.
"""
return search(parse_grid(grid)) return search(parse_grid(grid))
def some(seq): def some(seq):
"Return some element of seq that is true." """Return some element of seq that is true."""
for e in seq: for e in seq:
if e: if e:
return e return e
@ -126,7 +141,9 @@ def some(seq):
def search(values): def search(values):
"Using depth-first search and propagation, try all possible values." """
Using depth-first search and propagation, try all possible values.
"""
if values is False: if values is False:
return False ## Failed earlier return False ## Failed earlier
if all(len(values[s]) == 1 for s in squares): if all(len(values[s]) == 1 for s in squares):
@ -137,9 +154,11 @@ def search(values):
def solve_all(grids, name="", showif=0.0): def solve_all(grids, name="", showif=0.0):
"""Attempt to solve a sequence of grids. Report results. """
Attempt to solve a sequence of grids. Report results.
When showif is a number of seconds, display puzzles that take longer. When showif is a number of seconds, display puzzles that take longer.
When showif is None, don't display any puzzles.""" When showif is None, don't display any puzzles.
"""
def time_solve(grid): def time_solve(grid):
start = time.monotonic() start = time.monotonic()
@ -162,7 +181,9 @@ def solve_all(grids, name="", showif=0.0):
def solved(values): def solved(values):
"A puzzle is solved if each unit is a permutation of the digits 1 to 9." """
A puzzle is solved if each unit is a permutation of the digits 1 to 9.
"""
def unitsolved(unit): def unitsolved(unit):
return {values[s] for s in unit} == set(digits) return {values[s] for s in unit} == set(digits)
@ -177,9 +198,11 @@ def from_file(filename, sep="\n"):
def random_puzzle(assignments=17): def random_puzzle(assignments=17):
"""Make a random puzzle with N or more assignments. Restart on contradictions. """
Make a random puzzle with N or more assignments. Restart on contradictions.
Note the resulting puzzle is not guaranteed to be solvable, but empirically Note the resulting puzzle is not guaranteed to be solvable, but empirically
about 99.8% of them are solvable. Some have multiple solutions.""" about 99.8% of them are solvable. Some have multiple solutions.
"""
values = {s: digits for s in squares} values = {s: digits for s in squares}
for s in shuffled(squares): for s in shuffled(squares):
if not assign(values, s, random.choice(values[s])): if not assign(values, s, random.choice(values[s])):
@ -191,7 +214,9 @@ def random_puzzle(assignments=17):
def shuffled(seq): def shuffled(seq):
"Return a randomly shuffled copy of the input sequence." """
Return a randomly shuffled copy of the input sequence.
"""
seq = list(seq) seq = list(seq)
random.shuffle(seq) random.shuffle(seq)
return seq return seq

View File

@ -221,6 +221,10 @@ def del_node(root: MyNode, data: Any) -> MyNode | None:
else: else:
root.set_right(del_node(right_child, data)) root.set_right(del_node(right_child, data))
# Re-fetch left_child and right_child references
left_child = root.get_left()
right_child = root.get_right()
if get_height(right_child) - get_height(left_child) == 2: if get_height(right_child) - get_height(left_child) == 2:
assert right_child is not None assert right_child is not None
if get_height(right_child.get_right()) > get_height(right_child.get_left()): if get_height(right_child.get_right()) > get_height(right_child.get_left()):

View File

@ -0,0 +1,328 @@
import random
from collections.abc import Callable, Sequence
from concurrent.futures import ThreadPoolExecutor
import numpy as np
# Parameters
N_POPULATION = 100 # Population size
N_GENERATIONS = 500 # Maximum number of generations
N_SELECTED = 50 # Number of parents selected for the next generation
MUTATION_PROBABILITY = 0.1 # Mutation probability
CROSSOVER_RATE = 0.8 # Probability of crossover
SEARCH_SPACE = (-10, 10) # Search space for the variables
# Random number generator
rng = np.random.default_rng()
class GeneticAlgorithm:
def __init__(
self,
function: Callable[[float, float], float],
bounds: Sequence[tuple[int | float, int | float]],
population_size: int,
generations: int,
mutation_prob: float,
crossover_rate: float,
maximize: bool = True,
) -> None:
self.function = function # Target function to optimize
self.bounds = bounds # Search space bounds (for each variable)
self.population_size = population_size
self.generations = generations
self.mutation_prob = mutation_prob
self.crossover_rate = crossover_rate
self.maximize = maximize
self.dim = len(bounds) # Dimensionality of the function (number of variables)
# Initialize population
self.population = self.initialize_population()
def initialize_population(self) -> list[np.ndarray]:
"""
Initialize the population with random individuals within the search space.
Example:
>>> ga = GeneticAlgorithm(
... function=lambda x, y: x**2 + y**2,
... bounds=[(-10, 10), (-10, 10)],
... population_size=5,
... generations=10,
... mutation_prob=0.1,
... crossover_rate=0.8,
... maximize=False
... )
>>> len(ga.initialize_population())
5 # The population size should be equal to 5.
>>> all(len(ind) == 2 for ind in ga.initialize_population())
# Each individual should have 2 variables
True
"""
return [
np.array([rng.uniform(b[0], b[1]) for b in self.bounds])
for _ in range(self.population_size)
]
def fitness(self, individual: np.ndarray) -> float:
"""
Calculate the fitness value (function value) for an individual.
Example:
>>> ga = GeneticAlgorithm(
... function=lambda x, y: x**2 + y**2,
... bounds=[(-10, 10), (-10, 10)],
... population_size=10,
... generations=10,
... mutation_prob=0.1,
... crossover_rate=0.8,
... maximize=False
... )
>>> individual = np.array([1.0, 2.0])
>>> ga.fitness(individual)
-5.0 # The fitness should be -1^2 + 2^2 = 5 for minimizing
>>> ga.maximize = True
>>> ga.fitness(individual)
5.0 # The fitness should be 1^2 + 2^2 = 5 when maximizing
"""
value = float(self.function(*individual)) # Ensure fitness is a float
return value if self.maximize else -value # If minimizing, invert the fitness
def select_parents(
self, population_score: list[tuple[np.ndarray, float]]
) -> list[np.ndarray]:
"""
Select top N_SELECTED parents based on fitness.
Example:
>>> ga = GeneticAlgorithm(
... function=lambda x, y: x**2 + y**2,
... bounds=[(-10, 10), (-10, 10)],
... population_size=10,
... generations=10,
... mutation_prob=0.1,
... crossover_rate=0.8,
... maximize=False
... )
>>> population_score = [
... (np.array([1.0, 2.0]), 5.0),
... (np.array([-1.0, -2.0]), 5.0),
... (np.array([0.0, 0.0]), 0.0),
... ]
>>> selected_parents = ga.select_parents(population_score)
>>> len(selected_parents)
2 # Should select the two parents with the best fitness scores.
>>> np.array_equal(selected_parents[0], np.array([1.0, 2.0]))
True # Parent 1 should be [1.0, 2.0]
>>> np.array_equal(selected_parents[1], np.array([-1.0, -2.0]))
True # Parent 2 should be [-1.0, -2.0]
>>> population_score = [
... (np.array([1.0, 2.0]), 5.0),
... (np.array([1.0, -2.0]), 5.0),
... (np.array([0.0, 0.0]), 0.0),
... (np.array([-1.0, 2.0]), 5.0),
... (np.array([-1.0, -2.0]), 5.0)
... ]
>>> selected_parents = ga.select_parents(population_score)
>>> len(selected_parents)
5 # Should select the top 5 parents with the best fitness scores.
>>> np.array_equal(selected_parents[0], np.array([1.0, 2.0]))
True # Parent 1 should be [1.0, 2.0]
"""
if not population_score:
raise ValueError("Population score is empty, cannot select parents.")
population_score.sort(key=lambda score_tuple: score_tuple[1], reverse=True)
selected_count = min(N_SELECTED, len(population_score))
return [ind for ind, _ in population_score[:selected_count]]
def crossover(
self, parent1: np.ndarray, parent2: np.ndarray
) -> tuple[np.ndarray, np.ndarray]:
"""
Perform uniform crossover between two parents to generate offspring.
Args:
parent1 (np.ndarray): The first parent.
parent2 (np.ndarray): The second parent.
Returns:
tuple[np.ndarray, np.ndarray]: The two offspring generated by crossover.
Example:
>>> ga = GeneticAlgorithm(
... lambda x, y: -(x**2 + y**2),
... [(-10, 10), (-10, 10)],
... 10, 100, 0.1, 0.8, True
... )
>>> parent1, parent2 = np.array([1, 2]), np.array([3, 4])
>>> len(ga.crossover(parent1, parent2)) == 2
True
"""
if random.random() < self.crossover_rate:
cross_point = random.randint(1, self.dim - 1)
child1 = np.concatenate((parent1[:cross_point], parent2[cross_point:]))
child2 = np.concatenate((parent2[:cross_point], parent1[cross_point:]))
return child1, child2
return parent1, parent2
def mutate(self, individual: np.ndarray) -> np.ndarray:
"""
Apply mutation to an individual.
Args:
individual (np.ndarray): The individual to mutate.
Returns:
np.ndarray: The mutated individual.
Example:
>>> ga = GeneticAlgorithm(
... lambda x, y: -(x**2 + y**2),
... [(-10, 10), (-10, 10)],
... 10, 100, 0.1, 0.8, True
... )
>>> ind = np.array([1.0, 2.0])
>>> mutated = ga.mutate(ind)
>>> len(mutated) == 2 # Ensure it still has the correct number of dimensions
True
"""
for i in range(self.dim):
if random.random() < self.mutation_prob:
individual[i] = rng.uniform(self.bounds[i][0], self.bounds[i][1])
return individual
def evaluate_population(self) -> list[tuple[np.ndarray, float]]:
"""
Evaluate the fitness of the entire population in parallel.
Returns:
list[tuple[np.ndarray, float]]:
The population with their respective fitness values.
Example:
>>> ga = GeneticAlgorithm(
... lambda x, y: -(x**2 + y**2),
... [(-10, 10), (-10, 10)],
... 10, 100, 0.1, 0.8, True
... )
>>> eval_population = ga.evaluate_population()
>>> len(eval_population) == ga.population_size # Ensure population size
True
>>> all(
... isinstance(ind, tuple) and isinstance(ind[1], float)
... for ind in eval_population
... )
True
"""
with ThreadPoolExecutor() as executor:
return list(
executor.map(
lambda individual: (individual, self.fitness(individual)),
self.population,
)
)
def evolve(self, verbose: bool = True) -> np.ndarray:
"""
Evolve the population over the generations to find the best solution.
Args:
verbose (bool): If True, prints the progress of the generations.
Returns:
np.ndarray: The best individual found during the evolution process.
Example:
>>> ga = GeneticAlgorithm(
... function=lambda x, y: x**2 + y**2,
... bounds=[(-10, 10), (-10, 10)],
... population_size=10,
... generations=10,
... mutation_prob=0.1,
... crossover_rate=0.8,
... maximize=False
... )
>>> best_solution = ga.evolve(verbose=False)
>>> len(best_solution)
2 # The best solution should be a 2-element array (var_x, var_y)
>>> isinstance(best_solution[0], float) # First element should be a float
True
>>> isinstance(best_solution[1], float) # Second element should be a float
True
"""
best_individual = None
for generation in range(self.generations):
# Evaluate population fitness (multithreaded)
population_score = self.evaluate_population()
# Ensure population_score isn't empty
if not population_score:
raise ValueError("Population score is empty. No individuals evaluated.")
# Check the best individual
best_individual = max(
population_score, key=lambda score_tuple: score_tuple[1]
)[0]
best_fitness = self.fitness(best_individual)
# Select parents for next generation
parents = self.select_parents(population_score)
next_generation = []
# Generate offspring using crossover and mutation
for i in range(0, len(parents), 2):
parent1, parent2 = (
parents[i],
parents[(i + 1) % len(parents)],
) # Wrap around for odd cases
child1, child2 = self.crossover(parent1, parent2)
next_generation.append(self.mutate(child1))
next_generation.append(self.mutate(child2))
# Ensure population size remains the same
self.population = next_generation[: self.population_size]
if verbose and generation % 10 == 0:
print(f"Generation {generation}: Best Fitness = {best_fitness}")
return best_individual
# Example target function for optimization
def target_function(var_x: float, var_y: float) -> float:
"""
Example target function (parabola) for optimization.
Args:
var_x (float): The x-coordinate.
var_y (float): The y-coordinate.
Returns:
float: The value of the function at (var_x, var_y).
Example:
>>> target_function(0, 0)
0
>>> target_function(1, 1)
2
"""
return var_x**2 + var_y**2 # Simple parabolic surface (minimization)
# Set bounds for the variables (var_x, var_y)
bounds = [(-10, 10), (-10, 10)] # Both var_x and var_y range from -10 to 10
# Instantiate and run the genetic algorithm
ga = GeneticAlgorithm(
function=target_function,
bounds=bounds,
population_size=N_POPULATION,
generations=N_GENERATIONS,
mutation_prob=MUTATION_PROBABILITY,
crossover_rate=CROSSOVER_RATE,
maximize=False, # Minimize the function
)
best_solution = ga.evolve()
print(f"Best solution found: {best_solution}")
print(f"Best fitness (minimum value of function): {target_function(*best_solution)}")

View File

@ -159,7 +159,7 @@ lint.pylint.max-returns = 8 # default: 6
lint.pylint.max-statements = 88 # default: 50 lint.pylint.max-statements = 88 # default: 50
[tool.codespell] [tool.codespell]
ignore-words-list = "3rt,ans,bitap,crate,damon,fo,followings,hist,iff,kwanza,manuel,mater,secant,som,sur,tim,toi,zar" ignore-words-list = "3rt,abd,aer,ans,bitap,crate,damon,fo,followings,hist,iff,kwanza,manuel,mater,secant,som,sur,tim,toi,zar"
skip = "./.*,*.json,*.lock,ciphers/prehistoric_men.txt,project_euler/problem_022/p022_names.txt,pyproject.toml,strings/dictionary.txt,strings/words.txt" skip = "./.*,*.json,*.lock,ciphers/prehistoric_men.txt,project_euler/problem_022/p022_names.txt,pyproject.toml,strings/dictionary.txt,strings/words.txt"
[tool.pytest.ini_options] [tool.pytest.ini_options]

View File

@ -85,6 +85,8 @@ def bubble_sort_recursive(collection: list[Any]) -> list[Any]:
[1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7] [1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7]
>>> bubble_sort_recursive([1, 3.3, 5, 7.7, 2, 4.4, 6]) >>> bubble_sort_recursive([1, 3.3, 5, 7.7, 2, 4.4, 6])
[1, 2, 3.3, 4.4, 5, 6, 7.7] [1, 2, 3.3, 4.4, 5, 6, 7.7]
>>> bubble_sort_recursive(['a', 'Z', 'B', 'C', 'A', 'c'])
['A', 'B', 'C', 'Z', 'a', 'c']
>>> import random >>> import random
>>> collection_arg = random.sample(range(-50, 50), 100) >>> collection_arg = random.sample(range(-50, 50), 100)
>>> bubble_sort_recursive(collection_arg) == sorted(collection_arg) >>> bubble_sort_recursive(collection_arg) == sorted(collection_arg)