Compare commits

..

No commits in common. "c0892a06515b8ea5030db2e8344dee2292bb10ad" and "1faf10b5c2dff8cef3f5d59f60a126bd19bb1c44" have entirely different histories.

2 changed files with 48 additions and 53 deletions

View File

@ -16,7 +16,7 @@ repos:
- id: auto-walrus
- repo: https://github.com/charliermarsh/ruff-pre-commit
rev: v0.0.267
rev: v0.0.263
hooks:
- id: ruff
@ -33,7 +33,7 @@ repos:
- tomli
- repo: https://github.com/tox-dev/pyproject-fmt
rev: "0.11.2"
rev: "0.11.1"
hooks:
- id: pyproject-fmt
@ -51,7 +51,7 @@ repos:
- id: validate-pyproject
- repo: https://github.com/pre-commit/mirrors-mypy
rev: v1.3.0
rev: v1.2.0
hooks:
- id: mypy
args:

View File

@ -21,54 +21,6 @@ MUTATION_PROBABILITY = 0.4
random.seed(random.randint(0, 1000))
def evaluate(item: str, main_target: str) -> tuple[str, float]:
"""
Evaluate how similar the item is with the target by just
counting each char in the right position
>>> evaluate("Helxo Worlx", "Hello World")
('Helxo Worlx', 9.0)
"""
score = len([g for position, g in enumerate(item) if g == main_target[position]])
return (item, float(score))
def crossover(parent_1: str, parent_2: str) -> tuple[str, str]:
"""Slice and combine two string at a random point."""
random_slice = random.randint(0, len(parent_1) - 1)
child_1 = parent_1[:random_slice] + parent_2[random_slice:]
child_2 = parent_2[:random_slice] + parent_1[random_slice:]
return (child_1, child_2)
def mutate(child: str, genes: list[str]) -> str:
"""Mutate a random gene of a child with another one from the list."""
child_list = list(child)
if random.uniform(0, 1) < MUTATION_PROBABILITY:
child_list[random.randint(0, len(child)) - 1] = random.choice(genes)
return "".join(child_list)
# Select, crossover and mutate a new population.
def select(
parent_1: tuple[str, float],
population_score: list[tuple[str, float]],
genes: list[str],
) -> list[str]:
"""Select the second parent and generate new population"""
pop = []
# Generate more children proportionally to the fitness score.
child_n = int(parent_1[1] * 100) + 1
child_n = 10 if child_n >= 10 else child_n
for _ in range(child_n):
parent_2 = population_score[random.randint(0, N_SELECTED)][0]
child_1, child_2 = crossover(parent_1[0], parent_2)
# Append new string to the population list.
pop.append(mutate(child_1, genes))
pop.append(mutate(child_2, genes))
return pop
def basic(target: str, genes: list[str], debug: bool = True) -> tuple[int, int, str]:
"""
Verify that the target contains no genes besides the ones inside genes variable.
@ -118,6 +70,17 @@ def basic(target: str, genes: list[str], debug: bool = True) -> tuple[int, int,
total_population += len(population)
# Random population created. Now it's time to evaluate.
def evaluate(item: str, main_target: str = target) -> tuple[str, float]:
"""
Evaluate how similar the item is with the target by just
counting each char in the right position
>>> evaluate("Helxo Worlx", Hello World)
["Helxo Worlx", 9]
"""
score = len(
[g for position, g in enumerate(item) if g == main_target[position]]
)
return (item, float(score))
# Adding a bit of concurrency can make everything faster,
#
@ -131,7 +94,7 @@ def basic(target: str, genes: list[str], debug: bool = True) -> tuple[int, int,
#
# but with a simple algorithm like this, it will probably be slower.
# We just need to call evaluate for every item inside the population.
population_score = [evaluate(item, target) for item in population]
population_score = [evaluate(item) for item in population]
# Check if there is a matching evolution.
population_score = sorted(population_score, key=lambda x: x[1], reverse=True)
@ -158,9 +121,41 @@ def basic(target: str, genes: list[str], debug: bool = True) -> tuple[int, int,
(item, score / len(target)) for item, score in population_score
]
# Select, crossover and mutate a new population.
def select(parent_1: tuple[str, float]) -> list[str]:
"""Select the second parent and generate new population"""
pop = []
# Generate more children proportionally to the fitness score.
child_n = int(parent_1[1] * 100) + 1
child_n = 10 if child_n >= 10 else child_n
for _ in range(child_n):
parent_2 = population_score[ # noqa: B023
random.randint(0, N_SELECTED)
][0]
child_1, child_2 = crossover(parent_1[0], parent_2)
# Append new string to the population list.
pop.append(mutate(child_1))
pop.append(mutate(child_2))
return pop
def crossover(parent_1: str, parent_2: str) -> tuple[str, str]:
"""Slice and combine two string at a random point."""
random_slice = random.randint(0, len(parent_1) - 1)
child_1 = parent_1[:random_slice] + parent_2[random_slice:]
child_2 = parent_2[:random_slice] + parent_1[random_slice:]
return (child_1, child_2)
def mutate(child: str) -> str:
"""Mutate a random gene of a child with another one from the list."""
child_list = list(child)
if random.uniform(0, 1) < MUTATION_PROBABILITY:
child_list[random.randint(0, len(child)) - 1] = random.choice(genes)
return "".join(child_list)
# This is selection
for i in range(N_SELECTED):
population.extend(select(population_score[int(i)], population_score, genes))
population.extend(select(population_score[int(i)]))
# Check if the population has already reached the maximum value and if so,
# break the cycle. If this check is disabled, the algorithm will take
# forever to compute large strings, but will also calculate small strings in