mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-07 02:47:01 +00:00
bc8df6de31
* [pre-commit.ci] pre-commit autoupdate updates: - [github.com/astral-sh/ruff-pre-commit: v0.2.2 → v0.3.2](https://github.com/astral-sh/ruff-pre-commit/compare/v0.2.2...v0.3.2) - [github.com/pre-commit/mirrors-mypy: v1.8.0 → v1.9.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.8.0...v1.9.0) * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
211 lines
5.9 KiB
Python
211 lines
5.9 KiB
Python
"""
|
|
Wavelet tree is a data-structure designed to efficiently answer various range queries
|
|
for arrays. Wavelets trees are different from other binary trees in the sense that
|
|
the nodes are split based on the actual values of the elements and not on indices,
|
|
such as the with segment trees or fenwick trees. You can read more about them here:
|
|
1. https://users.dcc.uchile.cl/~jperez/papers/ioiconf16.pdf
|
|
2. https://www.youtube.com/watch?v=4aSv9PcecDw&t=811s
|
|
3. https://www.youtube.com/watch?v=CybAgVF-MMc&t=1178s
|
|
"""
|
|
|
|
from __future__ import annotations
|
|
|
|
test_array = [2, 1, 4, 5, 6, 0, 8, 9, 1, 2, 0, 6, 4, 2, 0, 6, 5, 3, 2, 7]
|
|
|
|
|
|
class Node:
|
|
def __init__(self, length: int) -> None:
|
|
self.minn: int = -1
|
|
self.maxx: int = -1
|
|
self.map_left: list[int] = [-1] * length
|
|
self.left: Node | None = None
|
|
self.right: Node | None = None
|
|
|
|
def __repr__(self) -> str:
|
|
"""
|
|
>>> node = Node(length=27)
|
|
>>> repr(node)
|
|
'Node(min_value=-1 max_value=-1)'
|
|
>>> repr(node) == str(node)
|
|
True
|
|
"""
|
|
return f"Node(min_value={self.minn} max_value={self.maxx})"
|
|
|
|
|
|
def build_tree(arr: list[int]) -> Node | None:
|
|
"""
|
|
Builds the tree for arr and returns the root
|
|
of the constructed tree
|
|
|
|
>>> build_tree(test_array)
|
|
Node(min_value=0 max_value=9)
|
|
"""
|
|
root = Node(len(arr))
|
|
root.minn, root.maxx = min(arr), max(arr)
|
|
# Leaf node case where the node contains only one unique value
|
|
if root.minn == root.maxx:
|
|
return root
|
|
"""
|
|
Take the mean of min and max element of arr as the pivot and
|
|
partition arr into left_arr and right_arr with all elements <= pivot in the
|
|
left_arr and the rest in right_arr, maintaining the order of the elements,
|
|
then recursively build trees for left_arr and right_arr
|
|
"""
|
|
pivot = (root.minn + root.maxx) // 2
|
|
|
|
left_arr: list[int] = []
|
|
right_arr: list[int] = []
|
|
|
|
for index, num in enumerate(arr):
|
|
if num <= pivot:
|
|
left_arr.append(num)
|
|
else:
|
|
right_arr.append(num)
|
|
root.map_left[index] = len(left_arr)
|
|
root.left = build_tree(left_arr)
|
|
root.right = build_tree(right_arr)
|
|
return root
|
|
|
|
|
|
def rank_till_index(node: Node | None, num: int, index: int) -> int:
|
|
"""
|
|
Returns the number of occurrences of num in interval [0, index] in the list
|
|
|
|
>>> root = build_tree(test_array)
|
|
>>> rank_till_index(root, 6, 6)
|
|
1
|
|
>>> rank_till_index(root, 2, 0)
|
|
1
|
|
>>> rank_till_index(root, 1, 10)
|
|
2
|
|
>>> rank_till_index(root, 17, 7)
|
|
0
|
|
>>> rank_till_index(root, 0, 9)
|
|
1
|
|
"""
|
|
if index < 0 or node is None:
|
|
return 0
|
|
# Leaf node cases
|
|
if node.minn == node.maxx:
|
|
return index + 1 if node.minn == num else 0
|
|
pivot = (node.minn + node.maxx) // 2
|
|
if num <= pivot:
|
|
# go the left subtree and map index to the left subtree
|
|
return rank_till_index(node.left, num, node.map_left[index] - 1)
|
|
else:
|
|
# go to the right subtree and map index to the right subtree
|
|
return rank_till_index(node.right, num, index - node.map_left[index])
|
|
|
|
|
|
def rank(node: Node | None, num: int, start: int, end: int) -> int:
|
|
"""
|
|
Returns the number of occurrences of num in interval [start, end] in the list
|
|
|
|
>>> root = build_tree(test_array)
|
|
>>> rank(root, 6, 3, 13)
|
|
2
|
|
>>> rank(root, 2, 0, 19)
|
|
4
|
|
>>> rank(root, 9, 2 ,2)
|
|
0
|
|
>>> rank(root, 0, 5, 10)
|
|
2
|
|
"""
|
|
if start > end:
|
|
return 0
|
|
rank_till_end = rank_till_index(node, num, end)
|
|
rank_before_start = rank_till_index(node, num, start - 1)
|
|
return rank_till_end - rank_before_start
|
|
|
|
|
|
def quantile(node: Node | None, index: int, start: int, end: int) -> int:
|
|
"""
|
|
Returns the index'th smallest element in interval [start, end] in the list
|
|
index is 0-indexed
|
|
|
|
>>> root = build_tree(test_array)
|
|
>>> quantile(root, 2, 2, 5)
|
|
5
|
|
>>> quantile(root, 5, 2, 13)
|
|
4
|
|
>>> quantile(root, 0, 6, 6)
|
|
8
|
|
>>> quantile(root, 4, 2, 5)
|
|
-1
|
|
"""
|
|
if index > (end - start) or start > end or node is None:
|
|
return -1
|
|
# Leaf node case
|
|
if node.minn == node.maxx:
|
|
return node.minn
|
|
# Number of elements in the left subtree in interval [start, end]
|
|
num_elements_in_left_tree = node.map_left[end] - (
|
|
node.map_left[start - 1] if start else 0
|
|
)
|
|
if num_elements_in_left_tree > index:
|
|
return quantile(
|
|
node.left,
|
|
index,
|
|
(node.map_left[start - 1] if start else 0),
|
|
node.map_left[end] - 1,
|
|
)
|
|
else:
|
|
return quantile(
|
|
node.right,
|
|
index - num_elements_in_left_tree,
|
|
start - (node.map_left[start - 1] if start else 0),
|
|
end - node.map_left[end],
|
|
)
|
|
|
|
|
|
def range_counting(
|
|
node: Node | None, start: int, end: int, start_num: int, end_num: int
|
|
) -> int:
|
|
"""
|
|
Returns the number of elements in range [start_num, end_num]
|
|
in interval [start, end] in the list
|
|
|
|
>>> root = build_tree(test_array)
|
|
>>> range_counting(root, 1, 10, 3, 7)
|
|
3
|
|
>>> range_counting(root, 2, 2, 1, 4)
|
|
1
|
|
>>> range_counting(root, 0, 19, 0, 100)
|
|
20
|
|
>>> range_counting(root, 1, 0, 1, 100)
|
|
0
|
|
>>> range_counting(root, 0, 17, 100, 1)
|
|
0
|
|
"""
|
|
if (
|
|
start > end
|
|
or node is None
|
|
or start_num > end_num
|
|
or node.minn > end_num
|
|
or node.maxx < start_num
|
|
):
|
|
return 0
|
|
if start_num <= node.minn and node.maxx <= end_num:
|
|
return end - start + 1
|
|
left = range_counting(
|
|
node.left,
|
|
(node.map_left[start - 1] if start else 0),
|
|
node.map_left[end] - 1,
|
|
start_num,
|
|
end_num,
|
|
)
|
|
right = range_counting(
|
|
node.right,
|
|
start - (node.map_left[start - 1] if start else 0),
|
|
end - node.map_left[end],
|
|
start_num,
|
|
end_num,
|
|
)
|
|
return left + right
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import doctest
|
|
|
|
doctest.testmod()
|