mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-07 02:47:01 +00:00
bc8df6de31
* [pre-commit.ci] pre-commit autoupdate updates: - [github.com/astral-sh/ruff-pre-commit: v0.2.2 → v0.3.2](https://github.com/astral-sh/ruff-pre-commit/compare/v0.2.2...v0.3.2) - [github.com/pre-commit/mirrors-mypy: v1.8.0 → v1.9.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.8.0...v1.9.0) * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
115 lines
3.7 KiB
Python
115 lines
3.7 KiB
Python
"""
|
|
The Newton-Raphson method (aka the Newton method) is a root-finding algorithm that
|
|
approximates a root of a given real-valued function f(x). It is an iterative method
|
|
given by the formula
|
|
|
|
x_{n + 1} = x_n + f(x_n) / f'(x_n)
|
|
|
|
with the precision of the approximation increasing as the number of iterations increase.
|
|
|
|
Reference: https://en.wikipedia.org/wiki/Newton%27s_method
|
|
"""
|
|
|
|
from collections.abc import Callable
|
|
|
|
RealFunc = Callable[[float], float]
|
|
|
|
|
|
def calc_derivative(f: RealFunc, x: float, delta_x: float = 1e-3) -> float:
|
|
"""
|
|
Approximate the derivative of a function f(x) at a point x using the finite
|
|
difference method
|
|
|
|
>>> import math
|
|
>>> tolerance = 1e-5
|
|
>>> derivative = calc_derivative(lambda x: x**2, 2)
|
|
>>> math.isclose(derivative, 4, abs_tol=tolerance)
|
|
True
|
|
>>> derivative = calc_derivative(math.sin, 0)
|
|
>>> math.isclose(derivative, 1, abs_tol=tolerance)
|
|
True
|
|
"""
|
|
return (f(x + delta_x / 2) - f(x - delta_x / 2)) / delta_x
|
|
|
|
|
|
def newton_raphson(
|
|
f: RealFunc,
|
|
x0: float = 0,
|
|
max_iter: int = 100,
|
|
step: float = 1e-6,
|
|
max_error: float = 1e-6,
|
|
log_steps: bool = False,
|
|
) -> tuple[float, float, list[float]]:
|
|
"""
|
|
Find a root of the given function f using the Newton-Raphson method.
|
|
|
|
:param f: A real-valued single-variable function
|
|
:param x0: Initial guess
|
|
:param max_iter: Maximum number of iterations
|
|
:param step: Step size of x, used to approximate f'(x)
|
|
:param max_error: Maximum approximation error
|
|
:param log_steps: bool denoting whether to log intermediate steps
|
|
|
|
:return: A tuple containing the approximation, the error, and the intermediate
|
|
steps. If log_steps is False, then an empty list is returned for the third
|
|
element of the tuple.
|
|
|
|
:raises ZeroDivisionError: The derivative approaches 0.
|
|
:raises ArithmeticError: No solution exists, or the solution isn't found before the
|
|
iteration limit is reached.
|
|
|
|
>>> import math
|
|
>>> tolerance = 1e-15
|
|
>>> root, *_ = newton_raphson(lambda x: x**2 - 5*x + 2, 0.4, max_error=tolerance)
|
|
>>> math.isclose(root, (5 - math.sqrt(17)) / 2, abs_tol=tolerance)
|
|
True
|
|
>>> root, *_ = newton_raphson(lambda x: math.log(x) - 1, 2, max_error=tolerance)
|
|
>>> math.isclose(root, math.e, abs_tol=tolerance)
|
|
True
|
|
>>> root, *_ = newton_raphson(math.sin, 1, max_error=tolerance)
|
|
>>> math.isclose(root, 0, abs_tol=tolerance)
|
|
True
|
|
>>> newton_raphson(math.cos, 0)
|
|
Traceback (most recent call last):
|
|
...
|
|
ZeroDivisionError: No converging solution found, zero derivative
|
|
>>> newton_raphson(lambda x: x**2 + 1, 2)
|
|
Traceback (most recent call last):
|
|
...
|
|
ArithmeticError: No converging solution found, iteration limit reached
|
|
"""
|
|
|
|
def f_derivative(x: float) -> float:
|
|
return calc_derivative(f, x, step)
|
|
|
|
a = x0 # Set initial guess
|
|
steps = []
|
|
for _ in range(max_iter):
|
|
if log_steps: # Log intermediate steps
|
|
steps.append(a)
|
|
|
|
error = abs(f(a))
|
|
if error < max_error:
|
|
return a, error, steps
|
|
|
|
if f_derivative(a) == 0:
|
|
raise ZeroDivisionError("No converging solution found, zero derivative")
|
|
a -= f(a) / f_derivative(a) # Calculate next estimate
|
|
raise ArithmeticError("No converging solution found, iteration limit reached")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import doctest
|
|
from math import exp, tanh
|
|
|
|
doctest.testmod()
|
|
|
|
def func(x: float) -> float:
|
|
return tanh(x) ** 2 - exp(3 * x)
|
|
|
|
solution, err, steps = newton_raphson(
|
|
func, x0=10, max_iter=100, step=1e-6, log_steps=True
|
|
)
|
|
print(f"{solution=}, {err=}")
|
|
print("\n".join(str(x) for x in steps))
|