Python/digital_image_processing/sepia.py
pre-commit-ci[bot] bc8df6de31
[pre-commit.ci] pre-commit autoupdate (#11322)
* [pre-commit.ci] pre-commit autoupdate

updates:
- [github.com/astral-sh/ruff-pre-commit: v0.2.2 → v0.3.2](https://github.com/astral-sh/ruff-pre-commit/compare/v0.2.2...v0.3.2)
- [github.com/pre-commit/mirrors-mypy: v1.8.0 → v1.9.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.8.0...v1.9.0)

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-03-13 07:52:41 +01:00

52 lines
1.4 KiB
Python

"""
Implemented an algorithm using opencv to tone an image with sepia technique
"""
from cv2 import destroyAllWindows, imread, imshow, waitKey
def make_sepia(img, factor: int):
"""
Function create sepia tone.
Source: https://en.wikipedia.org/wiki/Sepia_(color)
"""
pixel_h, pixel_v = img.shape[0], img.shape[1]
def to_grayscale(blue, green, red):
"""
Helper function to create pixel's greyscale representation
Src: https://pl.wikipedia.org/wiki/YUV
"""
return 0.2126 * red + 0.587 * green + 0.114 * blue
def normalize(value):
"""Helper function to normalize R/G/B value -> return 255 if value > 255"""
return min(value, 255)
for i in range(pixel_h):
for j in range(pixel_v):
greyscale = int(to_grayscale(*img[i][j]))
img[i][j] = [
normalize(greyscale),
normalize(greyscale + factor),
normalize(greyscale + 2 * factor),
]
return img
if __name__ == "__main__":
# read original image
images = {
percentage: imread("image_data/lena.jpg", 1) for percentage in (10, 20, 30, 40)
}
for percentage, img in images.items():
make_sepia(img, percentage)
for percentage, img in images.items():
imshow(f"Original image with sepia (factor: {percentage})", img)
waitKey(0)
destroyAllWindows()